Question:How find a point over this curve?

Question:How find a point over this curve?

Maple 2017

Hi!

Consider, fixed an integer m>1, the mapping given by the following procedure:

G := proc (t) local k, C; C := NULL; C := t; for k from 2 to d do C := C, 1/2-(1/2)*cos(Pi*m^(k-1)*t) end do; return [C] end proc

Then, it can be proved that given x in the cube [0,1]^{d} there is t in [0,1] such that the norm of x-G(t) is less, or equal, than sqrt(d-1)/m. Indeed, dividing the cube [0,1]^{d} into m^{d-1} subcubes of side-length 1/m x ... x 1/m x 1, the point x belongs to some of these subcubes, say J. As, by the properties of the cosines function, the curve G(t) lies in J whenever t in certain subinterval of [0,1], the result follows.

In other words, computing all the solutions of the equation

1/2*(1-cos(Pi*m^(d-1)*t)) = x[d], (j-1)/m <= t and t <= j/m

for some of these solutions the desired t is obtained, where j is such that x1 in [(j-1)/m,j/m] (x1 is the first coordinate of the point x). However, for large values of m and d, the above equation have many solutions, I have tried find all of them and the process is extremely slow....Other way to find such a t can be the following: find a t satisfying the following system of inequalities

EQ := abs(t-x[1]) <= 1/m; for k from 2 to d do EQ := EQ, abs(1/2*(1-cos(Pi*m^(k-1)*t))-x[k]) <= 1/m end do

and then, a solution of this system is a such t. I do not know how to find, efficiently, a t such that of x-G(t) is less, or equal, than sqrt(d-1)/m   :(

Some idea?