Question: Solve inverse trig equation

Hello,

I'm trying to solve  inverse trigonometric equation:

EQ := sqrt(3)*arctan(x/sqrt(3))-arctan(x) = 1;

sol := solve(EQ, {x});

#sol := {x = sqrt(3)*tan(RootOf(-tan(sqrt(3)*_Z-1)*sqrt(3)+3*tan(_Z)))}

evalf(sol);

#{x = 13.24164497} OK. one Real solution.

sol2 := evalf(allvalues(sol));

#sol2 := {x = -.1141310781-1.108044977*I}, {x = -.1141310781+1.108044977*I}, # {x = 1.142681884}, {x #= -2.379974990}, {x = 13.24164497}

Check:

seq(evalf(eval(EQ, sol2[k])), k = 1 .. nops([sol2]));

#.99999999991340592650+1.61960960*10^(-11)*I = 1., .99999999991340592650-#1.61960960*10^(-11)*I = 1., .15821278548775934290 = 1., -.4580182246463005988 = 1., #.9999999996233630663 = 1.

1.Can someone explain to me where did Maple find these Additional roots like: {x = 1.142681884}, {x = -2.379974990}?

2.It's a Bug or normal behavior ?

 

Please Wait...