Question: integration over vector variables - how to evaluate, with correct input?

What is it that's wrong with the following input in Maple?
Note that all variables are real. The sample worksheet is attached. 


 

NULL

with(Physics[Vectors])

p_ := px_i+py_j+pz_k

px_i+py_j+pz_k

(1)

NULL

q_ := qx_i+qy_j+qz_k

qx_i+qy_j+qz_k

(2)

NULL

w_ := wx_i+wy_j+wz_k

wx_i+wy_j+wz_k

(3)

NULL

'`#mover(mi("p"),mo("→"))`^2/(((a^2+`#mover(mi("p"),mo("→"))`^2)^2)(`#mover(mi("p"),mo("→"))`-`#mover(mi("q"),mo("→"))`+`#mover(mi("w"),mo("→"))`).(`#mover(mi("p"),mo("→"))`-`#mover(mi("q"),mo("→"))`+`#mover(mi("w"),mo("→"))`)+b1^2)'

`#mover(mi("p"),mo("→"))`^2/(Typesetting:-delayDotProduct(((a^2+`#mover(mi("p"),mo("→"))`^2)^2)(`#mover(mi("p"),mo("→"))`-`#mover(mi("q"),mo("→"))`+`#mover(mi("w"),mo("→"))`), `#mover(mi("p"),mo("→"))`-`#mover(mi("q"),mo("→"))`+`#mover(mi("w"),mo("→"))`)+b1^2)

(4)

NULL

int(`#mover(mi("p"),mo("→"))`^2/(Typesetting:-delayDotProduct(((a^2+`#mover(mi("p"),mo("→"))`^2)^2)(`#mover(mi("p"),mo("→"))`-`#mover(mi("q"),mo("→"))`+`#mover(mi("w"),mo("→"))`), `#mover(mi("p"),mo("→"))`-`#mover(mi("q"),mo("→"))`+`#mover(mi("w"),mo("→"))`)+b1^2), [px = -infinity .. infinity, py = -infinity .. infinity, pz = -infinity .. infinity])

`#mover(mi("p"),mo("→"))`^2*infinity/((a(`#mover(mi("p"),mo("→"))`-`#mover(mi("q"),mo("→"))`+`#mover(mi("w"),mo("→"))`)^2+`#mover(mi("p"),mo("→"))`(`#mover(mi("p"),mo("→"))`-`#mover(mi("q"),mo("→"))`+`#mover(mi("w"),mo("→"))`)^2)^2.(`#mover(mi("p"),mo("→"))`-`#mover(mi("q"),mo("→"))`+`#mover(mi("w"),mo("→"))`)+b1^2)

(5)

NULL

NULL

NULL


 

Download Integration-Vec-Example.mw

Please Wait...