Question: O differential equation question

Solve the following ODE for given initial conditions both analytically and numerically. Use the odeadvisor in DEtools package to classify the equations. Plot the explicit and numerical solutions in the range [0,20] using plot and odeplot commands. 𝑦 ′′(𝑡) + 16𝑦(𝑡) = 3 sin(𝜔 𝑡), for 𝜔 ∈ {1,4,5,8}, 𝑦(0) = 𝑦 ′ (0) = 0

 

I started by:

 

ode := diff(y(t), t, t) + 16*y(t) = 3*sin(w*t);
                  /  2      \                       
                  | d       |                       
           ode := |---- y(t)| + 16 y(t) = 3 sin(w t)
                  |   2     |                       
                  \ dt      /                       
odeadvisor(ode, y(t));
            [[_2nd_order, _linear, _nonhomogeneous]]
I undertsnad how to plot 

but how do I odeplot and how do I contribute 𝜔 ∈ {1,4,5,8

Please Wait...