Question: How to solve system of PDEs?

I want to solve the following system of PDEs with Maple: 

In fact, I want to determine q1,n1,p1,nn1,qn1,pn1 as a functions of pphi1 (assume  ne1(X,T)=(alpha/(2))*pphi1(X,T))

(mu, nu, beta, lambda, TE , alpha and TT are constant, but q1,n1,p1,nn1,qn1,pn1 depend on (X,T))

How do I do that?             

> diff(q1(X, T), X)-lambda*(diff(n1(X, T), X)) = 0;

diff(pphi1(X, T), X)+TE*(diff(p1(X, T), X))-lambda*(diff(q1(X, T), X)) = 0;

-lambda*(diff(p1(X, T), X))+3*(diff(q1(X, T), X)) = 0;

-lambda*(diff(nn1(X, T), X))+diff(qn1(X, T), X) = 0;

-lambda*(diff(qn1(X, T), X))+beta*TT*(diff(pn1(X, T), X))-beta*(diff(pphi1(X, T), X)) = 0;

-lambda*(diff(pn1(X, T), X))+3*(diff(qn1(X, T), X)) = 0;

-mu*ne1(X, T)-nu*nn1(X, T)+n1(X, T) = 0;




Please Wait...