# Question:calcula tion of an angle

## Question:calcula tion of an angle

Maple 2018

We consider an ellipse  E defined by the equation x²/a²+y²/b²=1. Either F1 and F2 its foci.
We consider a point M of E  such the angle F1,M,F2 is equal to a given value phi.
Find F1M et F2M in function of a, b and phi . Then find the coordiinates x0 and y0 of M in function of a, b, and phi. Here is the begining of my code;

restart;
_EnvHorizontalName := x: _EnvVerticalName := y:
with(plots):
line := proc (x1, y1, x2, y2) options operator, arrow; (x-x1)*(y2-y1)-(y-y1)*(x2-x1) end proc:
Vdot := proc (U, V) add(U[i]*V[i], i = 1 .. 2) end proc:
dist := proc (M, N) sqrt(Vdot(expand(M-N), expand(M-N))) end proc:

ell := x^2/a^2+y^2/b^2 = 1:
c := sqrt(a^2-b^2):
F1 := [c, 0]: F2 := [-c, 0]:
M := [a*cos(t), b*sin(t)]:
MF2 := simplify(expand(sqrt((c+a*cos(t))^2+(b*sin(t))^2)));
MF1 := simplify(expand(sqrt((c-a*cos(t))^2+(b*sin(t))^2)));
varphi := arccos((MF1^2+MF2^2-4*c^2)/(2*MF1*MF2));
f := unapply(varphi, t);
`max&varphi;` := f((1/2)*Pi);
diff(f(t), t);

a := 7: b := 5: t := (1/3)*Pi:
evalf(varphi);
evalf(MF1); evalf(dist(M, F1));
evalf(MF2); evalf(dist(M, F2));
MF1+MF2; evalf(%);
`max&varphi;`; evalf(%);
ELL := implicitplot(ell, x = -a-2 .. a+2, y = -2-b .. b+2, color = blue):
tp := textplot([[F1[], "F1"],[F2[],"F2"],[M[],"M"]], 'align' = {'above', 'left'}):
po := plot([F1,F2, M], style = point, symbolsize = 15, symbol = solidcircle, color = red):

display([ELL, tp, po], scaling = constrained): Would  you help me to answer the questions ? Thank you.

﻿