Question: Converting a function expressed by the hypergeom function to the Legendre function of the first and the second kind

Could you help me to convert the following maple solution expressed by the hypergeom function to the LegendreP and Q function?

diff(T[3](t), t, t)+3*(diff(a(t), t))*(diff(T[3](t), t))/a(t)+(2*(diff(a(t), t, t))/a(t)+6*(diff(a(t), t))^2/a(t)^2+(-Omega^2+6)/a(t)^2)*T[3](t)

diff(diff(T[3](t), t), t)+3*(diff(a(t), t))*(diff(T[3](t), t))/a(t)+(2*(diff(diff(a(t), t), t))/a(t)+6*(diff(a(t), t))^2/a(t)^2+(-Omega^2+6)/a(t)^2)*T[3](t)

(1)

"a(t) :=Zeta*(1-(1-t/(Zeta^()))^(2))^(1/(2)) "

proc (t) options operator, arrow, function_assign; Zeta*(1-(1-t/Zeta)^2)^(1/2) end proc

(2)

ODE2 := diff(T[3](t), t, t)+3*(diff(a(t), t))*(diff(T[3](t), t))/a(t)+(2*(diff(a(t), t, t))/a(t)+6*(diff(a(t), t))^2/a(t)^2+(-Omega^2+6)/a(t)^2)*T[3](t)

diff(diff(T[3](t), t), t)+3*(1-t/Zeta)*(diff(T[3](t), t))/((1-(1-t/Zeta)^2)*Zeta)+(2*(-(1-t/Zeta)^2/((1-(1-t/Zeta)^2)^(3/2)*Zeta)-1/((1-(1-t/Zeta)^2)^(1/2)*Zeta))/(Zeta*(1-(1-t/Zeta)^2)^(1/2))+6*(1-t/Zeta)^2/((1-(1-t/Zeta)^2)^2*Zeta^2)+(-Omega^2+6)/(Zeta^2*(1-(1-t/Zeta)^2)))*T[3](t)

(3)

generalsol := dsolve(ODE2, T[3](t))

T[3](t) = _C1*hypergeom([1/2+(-Omega^2+1)^(1/2), 1/2-(-Omega^2+1)^(1/2)], [1-((1/2)*I)*15^(1/2)], (1/2)*t/Zeta)*t^(-((1/4)*I)*15^(1/2)-1/4)*(2*Zeta-t)^(((1/4)*I)*15^(1/2)-1/4)+_C2*(-(-2*Zeta+t)*t)^(((1/4)*I)*15^(1/2)-1/4)*hypergeom([((1/2)*I)*15^(1/2)+1/2+(-Omega^2+1)^(1/2), ((1/2)*I)*15^(1/2)+1/2-(-Omega^2+1)^(1/2)], [1+((1/2)*I)*15^(1/2)], (1/2)*t/Zeta)

(4)

convert(_C1*hypergeom([1/2+sqrt(-Omega^2+1), 1/2-sqrt(-Omega^2+1)], [1-I*sqrt(15)*(1/2)], t/(2*Zeta))*t^(-I*sqrt(15)*(1/4)-1/4)*(2*Zeta-t)^(I*sqrt(15)*(1/4)-1/4), LegendreP)

_C1*GAMMA(1-((1/2)*I)*15^(1/2))*(-t/Zeta)^(((1/4)*I)*15^(1/2))*LegendreP(-1/2+(-Omega^2+1)^(1/2), ((1/2)*I)*15^(1/2), 1-t/Zeta)*t^(-((1/4)*I)*15^(1/2)-1/4)*(2*Zeta-t)^(((1/4)*I)*15^(1/2)-1/4)/((2*Zeta-t)/Zeta)^(((1/4)*I)*15^(1/2))

(5)

convert(_C2*(-t*(t-2*Zeta))^(I*sqrt(15)*(1/4)-1/4)*hypergeom([I*sqrt(15)*(1/2)+1/2+sqrt(-Omega^2+1), I*sqrt(15)*(1/2)+1/2-sqrt(-Omega^2+1)], [1+I*sqrt(15)*(1/2)], t/(2*Zeta)), LegendreQ)

_C2*(-t*(-2*Zeta+t))^(((1/4)*I)*15^(1/2)-1/4)*hypergeom([((1/2)*I)*15^(1/2)+1/2+(-Omega^2+1)^(1/2), ((1/2)*I)*15^(1/2)+1/2-(-Omega^2+1)^(1/2)], [1+((1/2)*I)*15^(1/2)], (1/2)*t/Zeta)

(6)

NULL

Download solve3.mw

Like this

Thank you.

Please Wait...