# Question:Looking for focal points of an ellipse

## Question:Looking for focal points of an ellipse

Maple 2021
_local(D);
f := (x, y) -> 3*x^2 - 3*y*x + 6*y^2 - 6*x + 7*y - 9;
coeffs(f(x, y));
A, B, C, D, E, F := %;
theta := 1/2*arctan(B/(A - C));
solve({-2*A*xc - B*yc = D, -B*xc - 2*C*yc = E});
assign(%);
x := xcan*cos(theta) - ycan*sin(theta) + xc;
y := xcan*sin(theta) + ycan*cos(theta) + yc;
Eq := simplify(expand(f(x, y)));
xcan^2/simplify(sqrt(-tcoeff(Eq)/coeff(Eq, xcan^2)))^`2` + ycan^2/simplify(sqrt(-tcoeff(Eq)/coeff(Eq, ycan^2)))^`2` = 1;
a := sqrt(-tcoeff(Eq)/coeff(Eq, xcan^2));
b := sqrt(-tcoeff(Eq)/coeff(Eq, ycan^2));
c := sqrt(a^2 - b^2);
F1 := [xc + c*cos(theta), yc + c*sin(theta)];
evalf(%);
F1 := [xc - c*cos(theta), yc - c*sin(theta)];
evalf(%);
Points := pointplot([F1[], F2[]], symbol = solidcircle, color = [red], symbolsize = 6);
xcan := plot(yc + tan(theta)*('x' - xc), 'x' = -2 .. 3.5, color = black);
ycan := plot(yc - ('x' - xc)/tan(theta), 'x' = 0.1 .. 1.5, color = black);
Ellipse := plots[implicitplot](f('x', 'y'), 'x' = -2 .. 3.5, 'y' = -2 .. 1.5, color = red, thickness = 2, gridrefine = 5);
labels := plots[textplot]([[0.4, 1.3, "ycan"], [3.2, 0.75, "xcan"]], font = [TIMES, ROMAN, 14]);
plots[display](xcan, ycan, Points, Ellipse, labels, scaling = constrained);

I do not why I get this message:

Error, (in plots:-display) expecting plot structure but received: pointplot([17/21-(2/21)*(1407/(-(3/2)*2^(1/2)+9/2)-1407/((3/2)*2^(1/2)+9/2))^(1/2)*cos((1/8)*Pi), -8/21-(2/21)*(1407/(-(3/2)*2^(1/2)+9/2)-1407/((3/2)*2^(1/2)+9/2))^(1/2)*sin((1/8)*Pi), F2[]], symbol = solidcircle, color = [red], symbolsize = 6) NULL;