Question: Ploting in pdsolve numerically

Dear Users,
I hope you are doing well. The following is the code to solve a nonlinear PD equation numerically and I plotted the graphs for T(y,t) sucessfully.

restart; with(plots); PDE1 := Pr*(diff(T(y, t), t)-Ree*(diff(T(y, t), y))) = (1+Nr*(T(y, t)+1)^3)*(diff(T(y, t), y, y))+3*Nr*(T(y, t)+1)^2*(diff(T(y, t), y))^2; ICandBC := {T(1, t) = 1, T(y, 0) = 1, (D[1](T))(0, t) = T(0, t)}; Ree := .1; Pr := 6.2; HA1 := [0, 1, 10]; AA := [red, green, blue, cyan, purple, black];
printlevel := 2; for i to nops(HA1) do Nr := op(i, HA1); print("Nr = ", %); PDE[i] := {PDE1}; pds[i] := pdsolve(PDE[i], ICandBC, numeric, spacestep = 1/200, timestep = 1/100); PlotsT[i] := pds[i]:-plot[display](T(y, t), t = 1, linestyle = "solid", labels = ["y", "u"], color = op(i, AA), numpoints = 800) end do;
display([`$`(PlotsT[j], j = 1 .. nops(HA1))], size = [1000, 600], axes = boxed, labels = [x, (convert("T", symbol))(x, T)], labelfont = ["Times", 14, Bold], labeldirections = [horizontal, vertical], axesfont = ["Arial", 14, Bold], thickness = 3)

I want to plot the graphs for (1+Nr*(T(y, t)+1)^3)*(diff(T(y, t), y)), at t = 1. Also want to plot diff(T(y, t), y) at y = 0 and y = 1 against Nr. Kindly help me in this matter.

Please Wait...