Question: Can Maple dsolve formally this ode?

I recently answered a question concerning the Lane-Emden equation (see here LaneEmden) where the main topic was about finding its numerical solution.

The generic form of the Lane-Emden equation with parameter n is

LaneEmden := n -> (Diff(xi^2*(Diff(theta(xi), xi)), xi)) = -theta(xi)^n * xi^2

      d   /  2 / d            \\             n   2
n -> ---- |xi  |---- theta(xi)|| = -theta(xi)  xi 
      dxi \    \ dxi          //                  

I have just realized that I missed a "small" point in the original question: the OP ( @shashi598 ) wrote
"[...] Maple never comes out of evaluating [the] analytical solution when n=5 [...] ".
The important point here is that this solution (at least for some initial conditions) is known and simple (in the sense it doen't involve any special function).

So I tried for a few hours to verify this claim, and ended wondering myself if it might not be right?

Could you please tell me (I guess @shashi598 would be interested too in your return) if the differential equation LaneEmden(5) can be solved formally?

After a little research it seems that very specigic method are used to build the analytic solution of the LaneEmden(n) (n not equal to 0, 1 and 5): serie expansions, homotopy, Adomian decomposition for instance.
I wasn't capable to find how the solution for LaneEmden(5) have been got for the first time (iseems to be atthe end of the 19th century).

Please Wait...