Items tagged with 2dmath

Feed

Hi quick question.  When I am writing in maple 2D input the next line seems to add a space and I have to manually go and take the spaces out.  Is there a quick fix for this?  

Thank you.

Why do I get different answers for the same command?

 different_answers.mw


 

``

restart

x := proc (n) options operator, arrow; cos(n*Pi) end proc;

proc (n) options operator, arrow; cos(n*Pi) end proc

(1)

"f:=k->"sum(k*x(n), n = 2 .. 3);f(1);

0

 

f(1)

(2)

f := proc (k) options operator, arrow; sum(k*x(n), n = 2 .. 3) end proc;

proc (k) options operator, arrow; sum(k*x(n), n = 2 .. 3) end proc

 

0

(3)

``


 

Download different_answers.mw

Hi!

I have solved an ODE and defined some physical values with Units.

Now i want to calculate the speed at a time of 120s for example, but the evalustion does not show a result.

I want to have a result like ve=63m/s for example and  not ve=v(120s)

Further more if calculating the complete worksheet, the diagramm settings are set to default and i can not see the curve like before. Is there a way to keep user defined settings?

Has somebody an idea what's going wrong?

Calculating completely without units works.

Thank you in advance

Volker
 

"v(t):=(tanh((t sqrt(F) sqrt(c)+arctanh((`v__0` sqrt(c))/(sqrt(F))) `m__0`)/`m__0`) sqrt(F))/(sqrt(c))"proc (t) options operator, arrow; tanh((t*sqrt(F)*sqrt(c)+arctanh(v__0*sqrt(c)/sqrt(F))*m__0)/m__0)*sqrt(F)/sqrt(c) end procNULL

F := 2800Unit('N') = 2800NULL

 

c := .7*Unit('kg'/'m') = .7*Units:-Unit(kg/m)NULL

 

m__0 := 1400*Unit('kg')= 1400*Units:-Unit(kg)NULL

NULL

v__0 := 10*Unit('m'/'s')

10*Units:-Unit(m/s)

(1)

v(t)"->"

v__e := v(120*Unit('s'))

``

``

v__e = v(120*Units:-Unit(s))NULL

``


 

Download Berechnungen.mw

 

Hey there. 

I recently had to install maple 2017, because the licensens for 2016 had expired. 

And in the new version, whenever i want to copy a matrix from a result, it gives me an _rtable, and a number. The result is the same, but it makes it harder to read and i am not able to edit values in this copied matrix. 

How do i change this?

hi..

I dont know why ''Y'' in this code does not calculate?

Also in Determinant  should exist term ''Omega''!!!

however this term not apear!!

please help

thanksZrO2.mw
 

restart

 

with(LinearAlgebra):

with(LinearAlgebra):

with(VectorCalculus):

E_c:=200e9:

rho_m:=2702:

rho_c:=5700:h:=1:Digits:=200:


E1 := `-`(4.2705019043175109408418470672541038566261199358253*10^11*V1(0))+`-`(2.3725010579541727449121372595856132536811777421250*10^11*V2(0))+1.5696340652026885245525677229595578452458265608494*10^11*W(1)+`-`(2.0979486841753331066266817163288024688566490248347*10^11*W(3))+5.4007241680476829082789400225291715487122216582787*10^10*W(5)+3.5809247085360964145389659227744194611678663499154*10^11*V1(2)+1.9894026158533868969660921793191219228710368610640*10^11*V2(2)+`-`(1.5013483257366249401397118595815208870951202899385*10^11*V1(4))+`-`(8.3408240318701385563317325532306715949728904996586*10^10*V2(4))+2850.*(omega^2)*V1(0)+`-`(2389.7976509529002380373043584565514766271608718347*(omega^2)*V1(2))+1001.9531250000000000000000000000000000000000000000*(omega^2)*V1(4):

 

E2 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.3725010579541727449121372595856132536811777421250, 10^11), V1(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(4.2705019043175109408418470672541038566261199358252, 10^11), V2(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.9894026158533868969660921793191219228710368610640, 10^11), V1(2))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.5809247085360964145389659227744194611678663499153, 10^11), V2(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.3408240318701385563317325532306715949728904996586, 10^10), V1(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.5013483257366249401397118595815208870951202899385, 10^11), V2(4)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.5696340652026885245525677229595578452458265608494, 10^11), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0979486841753331066266817163288024688566490248347, 10^11), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.4007241680476829082789400225291715487122216582787, 10^10), W(5))), VectorCalculus:-`*`(VectorCalculus:-`*`(2850., omega^2), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2389.7976509529002380373043584565514766271608718347, omega^2), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), V2(4))):

E3 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.8980008463633381959297098076684906029449421937001, 10^11), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0464227101351256830350451486397052301638843738996, 10^11), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.3986324561168887377511211442192016459044326832232, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.6004827786984552721859600150194476991414811055185, 10^10), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.5915220926827095175728737434552975382968294888513, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.6726592254961108450653860425845372759783123997272, 10^10), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0464227101351256830350451486397052301638843738996, 10^11), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.3986324561168887377511211442192016459044326832232, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.6004827786984552721859600150194476991414811055185, 10^10), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2850., omega^2), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2389.7976509529002380373043584565514766271608718347, omega^2), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), W(4))):

E4 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0464227101351256830350451486397052301638843738997, 10^11), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2214716299255315813643079206596798103103761378024, 10^11), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.3768909335128648548928127154266879343498252829884, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9781847824423219358080619338342989761407203990375, 10^11), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.7549042347962743784892618717635313196920712292577, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2808745009976567622404499724256074938728417212344, 10^11), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.9312526448854318622803431489640331342029443553127, 10^10), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0192655329160445762728144798285002567196893656192, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.7843041320517842057351587174649326412354044181698, 10^10), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(712.50000000000000000000000000000000000000000000000, omega^2), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), V1(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), V1(5))):

E5 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0464227101351256830350451486397052301638843738997, 10^11), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2214716299255315813643079206596798103103761378024, 10^11), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.3768909335128648548928127154266879343498252829884, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9781847824423219358080619338342989761407203990375, 10^11), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.7549042347962743784892618717635313196920712292577, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2808745009976567622404499724256074938728417212344, 10^11), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.9312526448854318622803431489640331342029443553127, 10^10), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0192655329160445762728144798285002567196893656192, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.7843041320517842057351587174649326412354044181698, 10^10), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(712.50000000000000000000000000000000000000000000000, omega^2), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), V2(5))):

E6 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.5696340652026885245525677229595578452458265608495, 10^11), V1(0)), VectorCalculus:-`*`(VectorCalculus:-`*`(1.5696340652026885245525677229595578452458265608495, 10^11), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(4.5129617500523730105208889903786611122746970868863, 10^11), W(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(6.2131578362567818226243648649366563582660969795536, 10^11), W(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0922794659196454621738794738143334638130489666375, 10^11), W(5)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9011462543626305766967003610771589296664104983626, 10^11), V1(2)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9011462543626305766967003610771589296664104983626, 10^11), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.8271521540250046106119733650076103042314699809888, 10^11), V1(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.8271521540250046106119733650076103042314699809888, 10^11), V2(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(712.50000000000000000000000000000000000000000000000, omega^2), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), W(5))):

E7 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9011462543626305766967003610771589296664104983626, 10^11), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(4.7119107128007866217743468531741155729216807681740, 10^11), V1(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.0748128190543187340378117893989426968741725224549, 10^11), V1(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.0995137005629364198630176713255719374808867211330, 10^11), W(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.3168284715873139556329481351343925356696602976947, 10^11), W(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.5809247085360964145389659227744194611678663499154, 10^11), V1(0))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.9894026158533868969660921793191219228710368610640, 10^11), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.8164461224961635078233550893702351473496517088145, 10^11), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0724123476084663741457840654142141615476683079173, 10^11), V2(4))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2389.7976509529002380373043584565514766271608718347, omega^2), V1(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2182.0312500000000000000000000000000000000000000000, omega^2), V1(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), V1(4)))):

E8 := -1.9011462543626305766967003610771589296664104983626*10^11*W(1)-4.7119107128007866217743468531741155729216807681740*10^11*V2(2)+5.0748128190543187340378117893989426968741725224549*10^11*V2(4)+3.0995137005629364198630176713255719374808867211330*10^11*W(3)-2.3168284715873139556329481351343925356696602976947*10^11*W(5)+1.9894026158533868969660921793191219228710368610640*10^11*V1(0)+3.5809247085360964145389659227744194611678663499153*10^11*V2(0)-1.8164461224961635078233550893702351473496517088145*10^11*V1(2)+1.0724123476084663741457840654142141615476683079173*10^11*V1(4)-2389.7976509529002380373043584565514766271608718347*omega^2*V2(0)+2182.0312500000000000000000000000000000000000000000*omega^2*V2(2)-1288.2502962167977845669843807304847803693289074734*omega^2*V2(4)

E9 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7549042347962743784892618717635313196920712292577, 10^11), V1(1)), VectorCalculus:-`*`(VectorCalculus:-`*`(1.7549042347962743784892618717635313196920712292577, 10^11), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.5012338210738538831817609945731111948027982901282, 10^11), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.1863576954843550511330528903118121550547428135047, 10^12), W(4))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.9040488725995079969887733136744097432253353062867, 10^11), V1(3)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.9040488725995079969887733136744097432253353062867, 10^11), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2.2665101950561447195804856166187258422604042194633, 10^11), V1(5))), VectorCalculus:-`*`(VectorCalculus:-`*`(2.2665101950561447195804856166187258422604042194633, 10^11), V2(5))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.5915220926827095175728737434552975382968294888513, 10^11), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2389.7976509529002380373043584565514766271608718347, omega^2), W(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2182.0312500000000000000000000000000000000000000000, omega^2), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), W(4)))):

E10 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.3986324561168887377511211442192016459044326832232, 10^11), W(0)), VectorCalculus:-`*`(VectorCalculus:-`*`(3.3768909335128648548928127154266879343498252829884, 10^11), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.1222023070711042519748179963162700048903049636371, 10^11), V1(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.9722762993987285423665483888817556162282387212450, 10^11), V1(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.9040488725995079969887733136744097432253353062868, 10^11), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.4534580327025486258972640897961855979523955862006, 10^11), W(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0192655329160445762728144798285002567196893656192, 10^11), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7886433757232630459689159808594662420330754071490, 10^11), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.6315367543759662237835567740527270814718925725463, 10^11), V2(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2148.6328125000000000000000000000000000000000000000, omega^2), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), V1(5)))):

E11 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.3986324561168887377511211442192016459044326832232, 10^11), W(0)), VectorCalculus:-`*`(VectorCalculus:-`*`(3.3768909335128648548928127154266879343498252829884, 10^11), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.1222023070711042519748179963162700048903049636371, 10^11), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.9722762993987285423665483888817556162282387212450, 10^11), V2(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.9040488725995079969887733136744097432253353062868, 10^11), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.4534580327025486258972640897961855979523955862006, 10^11), W(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0192655329160445762728144798285002567196893656192, 10^11), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7886433757232630459689159808594662420330754071490, 10^11), V1(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.6315367543759662237835567740527270814718925725463, 10^11), V1(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2148.6328125000000000000000000000000000000000000000, omega^2), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), V2(5)))):

E12 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0979486841753331066266817163288024688566490248347, 10^11), V1(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0979486841753331066266817163288024688566490248347, 10^11), V2(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(6.2131578362567818226243648649366563582660969795536, 10^11), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.1590169508270918129082825092379880685934152633409, 10^12), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.1929514898827735667473357103796145708703426375351, 10^12), W(5))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.0995137005629364198630176713255719374808867211330, 10^11), V1(2))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.0995137005629364198630176713255719374808867211330, 10^11), V2(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.8470197411831163997629889061698911342985204774594, 10^11), V1(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.8470197411831163997629889061698911342985204774594, 10^11), V2(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), W(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2148.6328125000000000000000000000000000000000000000, omega^2), W(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), W(5)))):

E13 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.8271521540250046106119733650076103042314699809887, 10^11), W(1)), VectorCalculus:-`*`(VectorCalculus:-`*`(5.0748128190543187340378117893989426968741725224548, 10^11), V1(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(9.4675908045149947710569375270005700088105651033426, 10^11), V1(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.8470197411831163997629889061698911342985204774594, 10^11), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.8700076253112037420543824992554999016189996047000, 10^11), W(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.5013483257366249401397118595815208870951202899385, 10^11), V1(0)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.3408240318701385563317325532306715949728904996586, 10^10), V2(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0724123476084663741457840654142141615476683079173, 10^11), V2(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.2408423807134586334931704209832226544674079633954, 10^11), V2(4)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), V1(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), V1(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1490.5792236328125000000000000000000000000000000000, omega^2), V1(4))):

E14 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.8271521540250046106119733650076103042314699809887, 10^11), W(1)), VectorCalculus:-`*`(VectorCalculus:-`*`(5.0748128190543187340378117893989426968741725224548, 10^11), V2(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(9.4675908045149947710569375270005700088105651033426, 10^11), V2(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.8470197411831163997629889061698911342985204774594, 10^11), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.8700076253112037420543824992554999016189996047000, 10^11), W(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.3408240318701385563317325532306715949728904996586, 10^10), V1(0)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.5013483257366249401397118595815208870951202899385, 10^11), V2(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0724123476084663741457840654142141615476683079173, 10^11), V1(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.2408423807134586334931704209832226544674079633954, 10^11), V1(4)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1490.5792236328125000000000000000000000000000000000, omega^2), V2(4))):

E15 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2808745009976567622404499724256074938728417212344, 10^11), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2808745009976567622404499724256074938728417212344, 10^11), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.1863576954843550511330528903118121550547428135047, 10^12), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.6311934721878459214486844029094270431266234063024, 10^12), W(4)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.4534580327025486258972640897961855979523955862006, 10^11), V1(3))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.4534580327025486258972640897961855979523955862006, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.0261223082938320761218206092817337666989622620092, 10^11), V1(5)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.0261223082938320761218206092817337666989622620092, 10^11), V2(5)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.6726592254961108450653860425845372759783123997272, 10^10), W(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1490.5792236328125000000000000000000000000000000000, omega^2), W(4))):

E16 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.6004827786984552721859600150194476991414811055197, 10^10), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9781847824423219358080619338342989761407203990374, 10^11), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.9722762993987285423665483888817556162282387212450, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0811342250226880053021853608526459273776333972115, 10^12), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2.2665101950561447195804856166187258422604042194634, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.0261223082938320761218206092817337666989622620092, 10^11), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.7843041320517842057351587174649326412354044181698, 10^10), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.6315367543759662237835567740527270814718925725463, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7046921130066534482600041414890585709013821212606, 10^11), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), V1(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2047.7851867675781250000000000000000000000000000000, omega^2), V1(5))):

E17 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.6004827786984552721859600150194476991414811055197, 10^10), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9781847824423219358080619338342989761407203990374, 10^11), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.9722762993987285423665483888817556162282387212450, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0811342250226880053021853608526459273776333972115, 10^12), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2.2665101950561447195804856166187258422604042194634, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.0261223082938320761218206092817337666989622620092, 10^11), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.7843041320517842057351587174649326412354044181698, 10^10), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.6315367543759662237835567740527270814718925725463, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7046921130066534482600041414890585709013821212606, 10^11), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2047.7851867675781250000000000000000000000000000000, omega^2), V2(5))):

E18 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.4007241680476829082789400225291715487122216582806, 10^10), V1(0)), VectorCalculus:-`*`(VectorCalculus:-`*`(5.4007241680476829082789400225291715487122216582806, 10^10), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0922794659196454621738794738143334638130489666373, 10^11), W(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.1929514898827735667473357103796145708703426375351, 10^12), W(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.8463891254257486220146464851652785318259567235472, 10^12), W(5)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.3168284715873139556329481351343925356696602976947, 10^11), V1(2)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.3168284715873139556329481351343925356696602976947, 10^11), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.8700076253112037420543824992554999016189996046996, 10^11), V1(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.8700076253112037420543824992554999016189996046996, 10^11), V2(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2047.7851867675781250000000000000000000000000000000, omega^2), W(5))):

q := Matrix([[coeff(E1, V1(0)), coeff(E1, V2(0)), coeff(E1, W(0)), coeff(E1, V1(1)), coeff(E1, V2(1)), coeff(E1, W(1)), coeff(E1, V1(2)), coeff(E1, V2(2)), coeff(E1, W(2)), coeff(E1, V1(3)), coeff(E1, V2(3)), coeff(E1, W(3)), coeff(E1, V1(4)), coeff(E1, V2(4)), coeff(E1, W(4)), coeff(E1, V1(5)), coeff(E1, V2(5)), coeff(E1, W(5))], [coeff(E2, V1(0)), coeff(E2, V2(0)), coeff(E2, W(0)), coeff(E2, V1(1)), coeff(E2, V2(1)), coeff(E2, W(1)), coeff(E2, V1(2)), coeff(E2, V2(2)), coeff(E2, W(2)), coeff(E2, V1(3)), coeff(E2, V2(3)), coeff(E2, W(3)), coeff(E2, V1(4)), coeff(E2, V2(4)), coeff(E2, W(4)), coeff(E2, V1(5)), coeff(E2, V2(5)), coeff(E2, W(5))], [coeff(E3, V1(0)), coeff(E3, V2(0)), coeff(E3, W(0)), coeff(E3, V1(1)), coeff(E3, V2(1)), coeff(E3, W(1)), coeff(E3, V1(2)), coeff(E3, V2(2)), coeff(E3, W(2)), coeff(E3, V1(3)), coeff(E3, V2(3)), coeff(E3, W(3)), coeff(E3, V1(4)), coeff(E3, V2(4)), coeff(E3, W(4)), coeff(E3, V1(5)), coeff(E3, V2(5)), coeff(E3, W(5))], [coeff(E4, V1(0)), coeff(E4, V2(0)), coeff(E4, W(0)), coeff(E4, V1(1)), coeff(E4, V2(1)), coeff(E4, W(1)), coeff(E4, V1(2)), coeff(E4, V2(2)), coeff(E4, W(2)), coeff(E4, V1(3)), coeff(E4, V2(3)), coeff(E4, W(3)), coeff(E4, V1(4)), coeff(E4, V2(4)), coeff(E4, W(4)), coeff(E4, V1(5)), coeff(E4, V2(5)), coeff(E4, W(5))], [coeff(E5, V1(0)), coeff(E5, V2(0)), coeff(E5, W(0)), coeff(E5, V1(1)), coeff(E5, V2(1)), coeff(E5, W(1)), coeff(E5, V1(2)), coeff(E5, V2(2)), coeff(E5, W(2)), coeff(E5, V1(3)), coeff(E5, V2(3)), coeff(E5, W(3)), coeff(E5, V1(4)), coeff(E5, V2(4)), coeff(E5, W(4)), coeff(E5, V1(5)), coeff(E5, V2(5)), coeff(E5, W(5))], [coeff(E6, V1(0)), coeff(E6, V2(0)), coeff(E6, W(0)), coeff(E6, V1(1)), coeff(E6, V2(1)), coeff(E6, W(1)), coeff(E6, V1(2)), coeff(E6, V2(2)), coeff(E6, W(2)), coeff(E6, V1(3)), coeff(E6, V2(3)), coeff(E6, W(3)), coeff(E6, V1(4)), coeff(E6, V2(4)), coeff(E6, W(4)), coeff(E6, V1(5)), coeff(E6, V2(5)), coeff(E6, W(5))], [coeff(E7, V1(0)), coeff(E7, V2(0)), coeff(E7, W(0)), coeff(E7, V1(1)), coeff(E7, V2(1)), coeff(E7, W(1)), coeff(E7, V1(2)), coeff(E7, V2(2)), coeff(E7, W(2)), coeff(E7, V1(3)), coeff(E7, V2(3)), coeff(E7, W(3)), coeff(E7, V1(4)), coeff(E7, V2(4)), coeff(E7, W(4)), coeff(E7, V1(5)), coeff(E7, V2(5)), coeff(E7, W(5))], [coeff(E8, V1(0)), coeff(E8, V2(0)), coeff(E8, W(0)), coeff(E8, V1(1)), coeff(E8, V2(1)), coeff(E8, W(1)), coeff(E8, V1(2)), coeff(E8, V2(2)), coeff(E8, W(2)), coeff(E8, V1(3)), coeff(E8, V2(3)), coeff(E8, W(3)), coeff(E8, V1(4)), coeff(E8, V2(4)), coeff(E8, W(4)), coeff(E8, V1(5)), coeff(E8, V2(5)), coeff(E8, W(5))], [coeff(E9, V1(0)), coeff(E9, V2(0)), coeff(E9, W(0)), coeff(E9, V1(1)), coeff(E9, V2(1)), coeff(E9, W(1)), coeff(E9, V1(2)), coeff(E9, V2(2)), coeff(E9, W(2)), coeff(E9, V1(3)), coeff(E9, V2(3)), coeff(E9, W(3)), coeff(E9, V1(4)), coeff(E9, V2(4)), coeff(E9, W(4)), coeff(E9, V1(5)), coeff(E9, V2(5)), coeff(E9, W(5))], [coeff(E10, V1(0)), coeff(E10, V2(0)), coeff(E10, W(0)), coeff(E10, V1(1)), coeff(E10, V2(1)), coeff(E10, W(1)), coeff(E10, V1(2)), coeff(E10, V2(2)), coeff(E10, W(2)), coeff(E10, V1(3)), coeff(E10, V2(3)), coeff(E10, W(3)), coeff(E10, V1(4)), coeff(E10, V2(4)), coeff(E10, W(4)), coeff(E10, V1(5)), coeff(E10, V2(5)), coeff(E10, W(5))], [coeff(E11, V1(0)), coeff(E11, V2(0)), coeff(E11, W(0)), coeff(E11, V1(1)), coeff(E11, V2(1)), coeff(E11, W(1)), coeff(E11, V1(2)), coeff(E11, V2(2)), coeff(E11, W(2)), coeff(E11, V1(3)), coeff(E11, V2(3)), coeff(E11, W(3)), coeff(E11, V1(4)), coeff(E11, V2(4)), coeff(E11, W(4)), coeff(E11, V1(5)), coeff(E11, V2(5)), coeff(E11, W(5))], [coeff(E12, V1(0)), coeff(E12, V2(0)), coeff(E12, W(0)), coeff(E12, V1(1)), coeff(E12, V2(1)), coeff(E12, W(1)), coeff(E12, V1(2)), coeff(E12, V2(2)), coeff(E12, W(2)), coeff(E12, V1(3)), coeff(E12, V2(3)), coeff(E12, W(3)), coeff(E12, V1(4)), coeff(E12, V2(4)), coeff(E12, W(4)), coeff(E12, V1(5)), coeff(E12, V2(5)), coeff(E12, W(5))], [coeff(E13, V1(0)), coeff(E13, V2(0)), coeff(E13, W(0)), coeff(E13, V1(1)), coeff(E13, V2(1)), coeff(E13, W(1)), coeff(E13, V1(2)), coeff(E13, V2(2)), coeff(E13, W(2)), coeff(E13, V1(3)), coeff(E13, V2(3)), coeff(E13, W(3)), coeff(E13, V1(4)), coeff(E13, V2(4)), coeff(E13, W(4)), coeff(E13, V1(5)), coeff(E13, V2(5)), coeff(E13, W(5))], [coeff(E14, V1(0)), coeff(E14, V2(0)), coeff(E14, W(0)), coeff(E14, V1(1)), coeff(E14, V2(1)), coeff(E14, W(1)), coeff(E14, V1(2)), coeff(E14, V2(2)), coeff(E14, W(2)), coeff(E14, V1(3)), coeff(E14, V2(3)), coeff(E14, W(3)), coeff(E14, V1(4)), coeff(E14, V2(4)), coeff(E14, W(4)), coeff(E14, V1(5)), coeff(E14, V2(5)), coeff(E14, W(5))], [coeff(E15, V1(0)), coeff(E15, V2(0)), coeff(E15, W(0)), coeff(E15, V1(1)), coeff(E15, V2(1)), coeff(E15, W(1)), coeff(E15, V1(2)), coeff(E15, V2(2)), coeff(E15, W(2)), coeff(E15, V1(3)), coeff(E15, V2(3)), coeff(E15, W(3)), coeff(E15, V1(4)), coeff(E15, V2(4)), coeff(E15, W(4)), coeff(E15, V1(5)), coeff(E15, V2(5)), coeff(E15, W(5))], [coeff(E16, V1(0)), coeff(E16, V2(0)), coeff(E16, W(0)), coeff(E16, V1(1)), coeff(E16, V2(1)), coeff(E16, W(1)), coeff(E16, V1(2)), coeff(E16, V2(2)), coeff(E16, W(2)), coeff(E16, V1(3)), coeff(E16, V2(3)), coeff(E16, W(3)), coeff(E16, V1(4)), coeff(E16, V2(4)), coeff(E16, W(4)), coeff(E16, V1(5)), coeff(E16, V2(5)), coeff(E16, W(5))], [coeff(E17, V1(0)), coeff(E17, V2(0)), coeff(E17, W(0)), coeff(E17, V1(1)), coeff(E17, V2(1)), coeff(E17, W(1)), coeff(E17, V1(2)), coeff(E17, V2(2)), coeff(E17, W(2)), coeff(E17, V1(3)), coeff(E17, V2(3)), coeff(E17, W(3)), coeff(E17, V1(4)), coeff(E17, V2(4)), coeff(E17, W(4)), coeff(E17, V1(5)), coeff(E17, V2(5)), coeff(E17, W(5))], [coeff(E18, V1(0)), coeff(E18, V2(0)), coeff(E18, W(0)), coeff(E18, V1(1)), coeff(E18, V2(1)), coeff(E18, W(1)), coeff(E18, V1(2)), coeff(E18, V2(2)), coeff(E18, W(2)), coeff(E18, V1(3)), coeff(E18, V2(3)), coeff(E18, W(3)), coeff(E18, V1(4)), coeff(E18, V2(4)), coeff(E18, W(4)), coeff(E18, V1(5)), coeff(E18, V2(5)), coeff(E18, W(5))]]); RR := subs(omega = evalf(Omega*sqrt(E_c/rho_c)/h), q); Y := Determinant(RR); with(LinearAlgebra); Sol := [fsolve(Y, Omega)]; J := min(select(`>`, Sol, 0))

Error, selecting function must return true or false

 

``


 

Download ZrO2.mw

 

 

I'm defining forces. The only thing I changed is x to y for one particular piece of an equation. I copied and pasted it so I don't see why it's not working.

opparam_fail.mw

Hello all, 

 

This is my first time with Maple, I have been a student of Mathematica for 7 years. I purchased Maple to learn a new software and I have heard great things about it. I somehow dont feel the flexibility of Mathematica in Maple documentations. It seems to be a bit constrained and not very straight forward in some aspects. Please correct me if I am wrong and also point out to tutorials or documents that I should be looking at before nose diving into Maple.

worksheet example here: 

I have faced 2 simple problems which I think is a bug in some form, or I may be wrong. Please advise.

  1. How do I insert Equation 7 before Equation 6? The worksheet wont let me do it.
  2. Why are 'and' and 'in' bolded automatically in SECTION format?

hello experts,

I was using maple for a physical  problem,

and things turned very complicated with a equation with bessel function in it,

like this BesselI(1, (0.9067480359e-2+0.9067480359e-2*I)*sqrt(f))andBesselI(0., (0.9067480359e-2+0.9067480359e-2*I)*sqrt(f)),

which include complex,

the whole equation is as followed:

the variable is f and RV,,dependent variable is RV.

how am I supposed to plot RV when f=100..4000?

it is certain RV has real part and imaginary part,maybe i need a 3Dplot?

please let me know if you have any idea.

best regards,


 

-7.873519774*10^18*RV^4+(2.676513624*10^12-3.842712573*10^15*(-1)^(3/4)*BesselI(1, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))/(Pi*sqrt(f)*BesselI(0, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))*(4+623.8617593*(-1)^(3/4)*BesselI(1, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))/(BesselI(0, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))*sqrt(f)))))*RV^2+80864.83845+1.440831316*10^9*(-1)^(3/4)*BesselI(1, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))/(Pi*sqrt(f)*BesselI(0, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))*(4+623.8617593*(-1)^(3/4)*BesselI(1, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))/(BesselI(0, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))*sqrt(f)))) = 0
 

want to plot the relationship between RV and f,but how?

 

complexplot(RV, f = 100 .. 4000, labels = ["Re", "Im"])

complexplot(RV, f = 100 .. 4000, labels = ["Re", "Im"])

(1)

NULL


 

Download bessel_in_equation.mw

 

i am trying to write the differential equation 

u_{t}=u_{xx}+2u^{2}(1-u) in my maple 15. 

but it shows error,

Error, empty number and  1 additional error.
 

How to label in inline math mode. I tried labels = ['theta', Typesetting:-Typeset(cos(1/theta)/sqrt(1-theta^2))] which gives a big expression on Y axis spreaded in two lines. But i want to label one line as in latex $\cos(1/\theta)/sqrt(1-\theta^2))$ . Is there a way to do it ?

I'm new to maple and I'm trying to write code in worksheet mode with some source code I have, I don't understand some of the syntax though, like the next:

m,  mass
r,  radius

J=m*r^2; Inertia

 

m and r are variables, so does this syntax mean that after the comma I set a name or label to the variables? because I tried to follow the same logic with 2d input math but it doesn´t work.
 

Hello!

I am working with the Maple 18.02 version. I just want want to perform a basic polynomial expansion using the command "expand" and it does not respond as it should according to what Maple Programming Help says it would. For example:

Maple Programming Help says:

I get:

.

Also, one sees that this isn't even true, as x(x+2) + 1 = x^2 +2x +1, which is not equal to x^2 + 3x +2.

Moreover, maple tells me it is equal..:

What is going on here? I woul like to get the full expanded form (without factors). Also, this is obviously not true, or maybe Maple means something else by x(x+2) +1...

Thank you!

Hi there,

I'm new here. My first question:

Is there a way to make Maple output display explicit multiplcations signs in 2D-math?

Example:
When you enter 5*2^x Maple will output 5*2^x. Is there a way to make Maple display the multiplications signs in output in stead just implicit multiplication signs (i.e. whitepaces)? (I would settle for Maple display all multiplication signs in output - not just the ones which are made explicit in the input.)

I searched this site. No luck. I looked into "Typesetting Rule Assistant", but I couldn't find a way to alter the output of multiplication sign (*).

Can you guys help me?

Kind Regards,

Jens

 

P.S.: I'm a teacher from Denmark. We use Maple before college/university for a lot of pupils. Some less competent pupils have a tendency to overlook the whitespace.

A bit of an annoyance. 

typing 'numerator' / 'denominator' generates an error.  The first quote never gets automatically grouped as it should.

Two workarounds.  The first is to move to, and delete the first quote and re-enter it again in front of numerator.
The second is to use brackets, although one shouldn't have to.

I'm looking over a file someone else made (I jusut have the image of it not the .mw), and there's a line that looks like this:

H1|
    | t=0.45.

H1 is an equation is set from an interpolation expansion line, and I believe this input solves the equation when the variable t is equal to 0.45. But how do I enter this into Maple? Thanks.

1 2 3 4 5 Page 1 of 5