Items tagged with ode

Feed

#first_question :how can i solve set of nonlinear ODEs,faster or using any packages ?
#second_question :what can be some boundary conditions for this type of nonlinear ODEs? how many BCs are required for this set of nonlinear ODEs? ( to use numeric solution)

 


 

restart:with(DEtools):with(DifferentialAlgebra):

eq[1]:=diff(N(r),r$2)+2/r*diff(N(r),r)+diff(phi(r),r)/phi(r)*diff(N(r),r)-mu^2/(32*phi(r))*N(r);

diff(diff(N(r), r), r)+2*(diff(N(r), r))/r+(diff(phi(r), r))*(diff(N(r), r))/phi(r)-(1/32)*mu^2*N(r)/phi(r)

(1)

eq[2]:=diff(phi(r),r$2)+2/r*diff(phi(r),r)-1/2*diff(phi(r),r)^2/phi(r)-8*diff(N(r),r)^2/(omega*(1-2*G*M/r))*phi(r);

diff(diff(phi(r), r), r)+2*(diff(phi(r), r))/r-(1/2)*(diff(phi(r), r))^2/phi(r)-8*(diff(N(r), r))^2*phi(r)/(omega*(1-2*G*M/r))

(2)

dsolve({eq[1],eq[2]});

``


 

Download nonlinear_ODE.mw

the Initial value problem is well defined but i could not find solution of the problem. A number of method have been used but all are useless. How to obtained graph of the all equations. Also can we find the value of R (radius) where P is zero.coupled_IVP.mw

Dear Community,

I try to solve the following very simple ODE symbolically with the ODE Analyzer assistant, yet Maple says "unble to obtain solution". :-/

If I try to slove it with dsolve, nothing happens. Is it really so difficult?

diff(p(h),h)=A/(B+C*p(h)), p(h0)=p1

A, B, C, h0 and p1 are constants. I use Maple 2016.

Tx in advance,

best egards

Andras

 

How to solve this problem? I want to display plot of differential equation system

this download link my problem https://drive.google.com/file/d/0B-qKE-5zgVbLeWVMd0xkMFY1Y00/view?usp=sharing

Thank you :)

i want to draw plot Y[1] . but i cant. thank you

restart;
with(LinearAlgebra); Digits := 15; with(plots); with(Optimization);;
NewM := Matrix(5, 5, [[4119700.0000, 0., 0., 0., 0.], [0., 175900.0000, 0., 0., 0.], [0., 0., 52796., 0., 0.], [0., 0., 0., 2002900.0000, 0.], [0., 0., 0., 0., 21711.]]); NewK := Matrix(5, 5, [[18278000.0000, 0., 0., 0., 0.], [0., 8478500.0000, 0., 0., 0.], [0., 0., 3874800.0000, 0., 0.], [0., 0., 0., 494710000.0000, 0.], [0., 0., 0., 0., 7707500.0000]]); L := Vector[column](5, [400689.480747934, 36882.2103608425, 24223.1756570268, 7197.48654698287, 5007.64668721342]); V := Vector[column](5, [4.43679672962542, 48.2014976972537, 73.3916065733549, 246.999805581163, 355.012621460930]);
Phi := Matrix(5, 5, [[1., 1., 1., 1., 1.], [1.96506022575420, 1.62041320563413, 1.42204109823483, 0.548765310483432e-1, -.795724394004826], [9.21473910149806, 2.36597630710861, -.837387679777313, -8.23805381555997, 0.930594200639915e-1], [10.5672146719479, 1.26937656539014, -.710851068914949, 12.5801876194058, -0.564138989400088e-1], [12.4282433098880, -2.02516824673162, .481291188486771, -1.71479964168293, 0.513709374343217e-2]]);
NS := ImportMatrix("D:/tabas.txt", datatype = float[8]);
t_NS := NS[() .. (), 1];
acc_NS := NS[() .. (), 2];
plot(NS, t = 0 .. 4.5, size = [800, 400]);
acc := unapply(CurveFitting:-Spline(t_NS, acc_NS/(9.81), t, degree = 1), t);
eq := seq(diff(x[i](t), t$2)+(2*0.5e-1)*sqrt(V[i])*(diff(x[i](t), t))+V[i]*x[i](t) = L[i]*acc(t)/NewM[i, i], i = 1 .. 5, 1);
ic := [seq({x[i](0) = 0, (D(x[i]))(0) = 0}, i = 1 .. 5, 1)];
sol := seq(dsolve({eq[i], ic[i][]}, numeric, output = listprocedure), i = 1 .. 5, 1);
Z := `<,>`(seq(sol[i][2], i = 1 .. 5));
#Y := Phi . Z;
#odeplot(Y[1], t = 0 .. 10);
tabas.txt

1.mw

how can i draw the plot of solution of Runge–Kutta methods

@rkt4.mw

i want to solve an ode , but maple return an integral in result, how can i have an answer?


 

restart:

eq:=1/(x*y^(2/3))*8.620689655172415*10^(-16)*(-3.11*10^23*x^2*y^(7/6)-3.92*10^19*y^(25/6)+2.14545039999999*10^29*(0.0108*exp(-45.07/y)+exp(-19.98/y^(1/3)-0.00935317203476387*y^2)))/(x+0.015*y^(1.2));

0.8620689655e-15*(-0.3110000000e24*x^2*y^(7/6)-0.3920000000e20*y^(25/6)+0.2317086432e28*exp(-45.07/y)+0.2145450400e30*exp(-19.98/y^(1/3)-0.935317203476387e-2*y^2))/(x*y^(2/3)*(x+0.15e-1*y^1.2))

(1)

eq:=subs(y=y(t),eq):

 

ans:=dsolve(diff(y(t),t)=eq);

t+Intat((12500/1724137931)*x*_a^(2/3)*(3*_a^(6/5)+200*x)/(49*_a^(25/6)+388750*x^2*_a^(7/6)-2896358040*exp(-(4507/100)/_a)-268181300000*exp(-(1/100000000000000000)*(935317203476387*_a^(7/3)+1998000000000000000)/_a^(1/3))), _a = y(t))+_C1 = 0

(2)

 

 

 


 

Download dsolve.mw

Hi, my dear friend,

i am solving 9 ODE with boundary conditionsNigam.mw

Eq1 := 2.*F1(eta)+diff(H1(eta), eta) = 0

2.*F1(eta)+diff(H1(eta), eta) = 0

(1)

Eq2 := F1(eta)^2-G1(eta)^2+(diff(F1(eta), eta))*H1(eta)-(diff(F1(eta), eta, eta)) = 0

F1(eta)^2-G1(eta)^2+(diff(F1(eta), eta))*H1(eta)-(diff(diff(F1(eta), eta), eta)) = 0

(2)

Eq3 := 2*F1(eta)*G1(eta)+H1(eta)*(diff(G1(eta), eta))-(diff(G1(eta), eta, eta)) = 0

2*F1(eta)*G1(eta)+H1(eta)*(diff(G1(eta), eta))-(diff(diff(G1(eta), eta), eta)) = 0

(3)

Eq4 := 4*F1(eta)*F3(eta)+H3(eta)*(diff(F1(eta), eta))+H1(eta)*(diff(F3(eta), eta))-2*G1(eta)*G3(eta)-2.*F1(eta)^2-1.5*H1(eta)-(diff(F3(eta), eta, eta)) = 0

4*F1(eta)*F3(eta)+H3(eta)*(diff(F1(eta), eta))+H1(eta)*(diff(F3(eta), eta))-2*G1(eta)*G3(eta)-2.*F1(eta)^2-1.5*H1(eta)-(diff(diff(F3(eta), eta), eta)) = 0

(4)

Eq5 := 2*F3(eta)*G1(eta)+4*F1(eta)*G3(eta)+H3(eta)*(diff(G1(eta), eta))-H1(eta)*(diff(G3(eta), eta))-2*F1(eta)*G1(eta)-1.5*H1(eta)*(diff(G1(eta), eta))-(diff(G3(eta), eta, eta)) = 0

2*F3(eta)*G1(eta)+4*F1(eta)*G3(eta)+H3(eta)*(diff(G1(eta), eta))-H1(eta)*(diff(G3(eta), eta))-2*F1(eta)*G1(eta)-1.5*H1(eta)*(diff(G1(eta), eta))-(diff(diff(G3(eta), eta), eta)) = 0

(5)

Eq6 := 4.*F3(eta)+diff(H3(eta), eta) = 0

4.*F3(eta)+diff(H3(eta), eta) = 0

(6)

Eq7 := 6*F1(eta)*F5(eta)-6*F1(eta)*F3(eta)+3.*F3(eta)^2+H1(eta)*(diff(F5(eta), eta))+H3(eta)*(diff(F3(eta), eta))+H5(eta)*(diff(F1(eta), eta))-1.5*(H1(eta)*(diff(F3(eta), eta))+H3(eta)*(diff(F1(eta), eta)))-G3(eta)^2-2*G1(eta)*G5(eta)-(diff(F5(eta), eta, eta)) = 0

6*F1(eta)*F5(eta)-6*F1(eta)*F3(eta)+3.*F3(eta)^2+H1(eta)*(diff(F5(eta), eta))+H3(eta)*(diff(F3(eta), eta))+H5(eta)*(diff(F1(eta), eta))-1.5*H1(eta)*(diff(F3(eta), eta))-1.5*H3(eta)*(diff(F1(eta), eta))-G3(eta)^2-2*G1(eta)*G5(eta)-(diff(diff(F5(eta), eta), eta)) = 0

(7)

Eq8 := 6*G5(eta)*F1(eta)+2*G1(eta)*F5(eta)+4*G3(eta)*F3(eta)-4*F1(eta)*G3(eta)-2*F3(eta)*G1(eta)+H1(eta)*(diff(G5(eta), eta))-1.5*(H1(eta)*(diff(G3(eta), eta))+H3(eta)*(diff(G1(eta), eta)))+H3(eta)*(diff(G3(eta), eta))+H5(eta)*(diff(G1(eta), eta))-(diff(G5(eta), eta, eta)) = 0

6*G5(eta)*F1(eta)+2*G1(eta)*F5(eta)+4*G3(eta)*F3(eta)-4*F1(eta)*G3(eta)-2*F3(eta)*G1(eta)+H1(eta)*(diff(G5(eta), eta))-1.5*H1(eta)*(diff(G3(eta), eta))-1.5*H3(eta)*(diff(G1(eta), eta))+H3(eta)*(diff(G3(eta), eta))+H5(eta)*(diff(G1(eta), eta))-(diff(diff(G5(eta), eta), eta)) = 0

(8)

Eq9 := 6.*F5(eta)+F3(eta)+diff(H5(eta), eta) = 0

6.*F5(eta)+F3(eta)+diff(H5(eta), eta) = 0

(9)

bcs1 := F1(0) = 0, F3(0) = 0, F5(0) = 0

F1(0) = 0, F3(0) = 0, F5(0) = 0

(10)

bcs2 := G1(0) = 1, G3(0) = 0, G5(0) = 0

G1(0) = 1, G3(0) = 0, G5(0) = 0

(11)

bcs3 := H1(0) = 0, H3(0) = 0, H5(0) = 0

H1(0) = 0, H3(0) = 0, H5(0) = 0

(12)

bcs4 := F1(10) = 0, F3(10) = 0, F5(10) = 0

F1(10) = 0, F3(10) = 0, F5(10) = 0

(13)

bcs5 := G1(10) = 0, G3(10) = 0, G5(10) = 0

G1(10) = 0, G3(10) = 0, G5(10) = 0

(14)

R := dsolve(eval({Eq1, Eq2, Eq3, Eq4, Eq5, Eq6, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5}), [F1(eta), F3(eta), F5(eta), G1(eta), G3(eta), G5(eta), H1(eta), H3(eta), H5(eta)], numeric, output = listprocedure)

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

``


Maple Worksheet - Error

Failed to load the worksheet 

Download Nigam.mwNigam.mw

then i got this error

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

i dont know where i need to change.. could you help me..

Hello everyone.

Please can I meet with Computational or/and Numerical anlysts that have worked or working on the algorihms particularly (Runge Kutta Nystrom, Block multistep methods including hybrid and Block Boundaru Value methods) for the solution of both IVP and BVP.

I will appreciante if I can learn from them and possibly collaborate with them. Thank you in anticipation of your positive response.

Imagine we have an ODE system 

odeSys := {diff(x(t),t$2)+diff(x(t),t)+x(t)=f(t),diff(y(t),t$2)+2*diff(y(t),t)+3*y(t)=g(t)};

It is easy to transform this system into a first order form by hand. But for larger systems, the procedure by hand becomes very error prone. Is there an intelligent way to transform a system of n scalar ODEs (order m) into a first order system? I know that the first order form is not unique. It is only important to reduce the system to a system of first order equations.

 

I want to solve the system of differential equations
sys :=
  diff(x(t,s),t) = y(t,s),
  diff(y(t,s),t) + x(t,s) = 0;

subject to the initial condition
ic := x(0,s) = a(s),
      y(0,s) = b(s);

where a(s) and b(s) are given.

This looks like a system of PDEs but actually it is a system
of ODEs because there are no derivatives with respect to s.
It is easy to obtain the solution by hand:

x(t,s) = b(s)*sin(t) + a(s)*cos(t)
y(t,s) = b(s)*cos(t) - a(s)*sin(t)

I don't know how to get this in Maple, either through dsolve()
or pdsolve().

Actually both dsolve({sys}) and pdsolve({sys}) do return
the correct general solution, however dsolve({sys, ic})
or pdsolve({sys, ic}) produce no output.  Is there a trick
to make the latter work?

 

i want to solve this equation,

y''(x)=5*exp(-10/y'(x)) on ]0,15[ with y(0)=0,y(15)=2 

can any one help me ? thank you

Hi, I'm trying to solve this ode:
restart; with(plots); with(DEtools);

l := t -> 0.5*tanh(0.5*t);

deq := diff(f(t), t)*l(t)*(diff(f(t), t, t)*l(t)+9.8*sin(f(t)))+diff(l(t), t)*(diff(f(t), t)^2*l(t)-9.8*cos(f(t))+4*(l(t)-0.5)) = 0;

sol := dsolve({deq, f(0) = 0, D(f)(0) = 0.1}, f(t), numeric);

 

but getting an error:

Error, (in dsolve/numeric/checksing) ode system has a removable singularity at t=0. Initial data is restricted to {f(t) = 1.77632183122019}
 

How can I possibly fix this?

Respected member!

Please help me in finding the solution of this problem....
 

NULL

 

 

NULL

>   

``

NULL

restart

with(RealDomain):

r := .2:

k := 5;

5

(1)

BCSforNum1 := u(0) = 0, (D(u))(0) = 1+beta*(((D@@2)(u))(0)-(D(u))(0)*RealDomain:-`^`(k, -1)), (D(u))(m) = 0, ((D@@2)(u))(m) = 0;

u(0) = 0, (D(u))(0) = 1+.2*((D@@2)(u))(0)-0.4000000000e-1*(D(u))(0), (D(u))(6) = 0, ((D@@2)(u))(6) = 0

 

v(0) = 1, v(6) = 0

(2)

numsol1 := dsolve({BCSforNum1, BCSforNum2, ODEforNum1, ODEforNum2}, numeric, output = listprocedure)

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

``


 

Download mplprimes.mw

Dear please check once it showing an error program.mw as intial value is not conververging

1 2 3 4 5 6 7 Last Page 1 of 29