666 jvbasha

javid basha jv

130 Reputation

8 Badges

6 years, 338 days

MaplePrimes Activity


These are questions asked by 666 jvbasha

Dear maple users,
Greetings.
Now I'm working on a project "solving ODE with an analytical solution".

So, I need how to find a residual error. 

Here I used the Homotopy Analysis Method(HAM) to solve the ode problem.

A similar HAM problem has solved using the Mathematica BVP2.H package.

Here I have encoded a maple code for my working problem. HAM.mw

CODE:Note(N is order of ittrration)

restart; with(plots)

pr := .5; ec := .5; N := 7; re := 2; ta := .5; H := 1:

dsolve(diff(f(x), `$`(x, 4)))

Rf := x^3*(diff(f[m-1](x), x, x, x, x))-2*x^2*(diff(f[m-1](x), x, x, x))+3*x*(diff(f[m-1](x), x, x))-3*(diff(f[m-1](x), x))-re*x^2*R*(sum((diff(f[m-1-n](x), x, x, x))*(diff(f[n](x), x)), n = 0 .. m-1))-re*x*R*(sum((diff(f[m-1-n](x), x))*(diff(f[n](x), x)), n = 0 .. m-1))+re*x^2*R*(sum((diff(f[m-1-n](x), x, x, x))*f[n](x), n = 0 .. m-1))-3*re*x*R*(sum((diff(f[m-1-n](x), x, x))*f[n](x), n = 0 .. m-1))+3*re*R*(sum((diff(f[m-1-n](x), x))*f[n](x), n = 0 .. m-1))+ta*x^3*(diff(f[m-1](x), x, x))-ta*x^2*(diff(f[m-1](x), x)):

dsolve(diff(f[m](x), x, x, x, x)-CHI[m]*(diff(f[m-1](x), x, x, x, x)) = h*H*Rf, f[m](x)):

f[0](x):=3 *x^(2)-2* x^(3);

for m from 1 by 1 to N do  CHI[m]:=`if`(m>1,1,0);  f[m](x):=int(int(int(int(CHI[m]*(x^(3)* diff(f[m-1](x),x,x,x,x))+h*H*(x^(3)* diff(f[m-1](x),x,x,x,x))-2*h*H*x^(2)*diff(f[m-1](x),x,x,x)+3*h*H*x*diff(f[m-1](x),x,x)-3*h*H*diff(f[m-1](x),x)-re*h*H*x^(2)*sum(diff(f[m-1-n](x),x,x,x)*diff(f[n](x),x),n=0..m-1)-re*h*H*x*sum(diff(f[m-1-n](x),x)*diff(f[n](x),x),n=0..m-1)+re*h*H*x^(2)*sum(diff(f[m-1-n](x),x,x,x)*(f[n](x)),n=0..m-1)-3*re*x*h*H*sum(diff(f[m-1-n](x),x,x)*(f[n](x)),n=0..m-1)+3* re*h*H*sum(diff(f[m-1-n](x),x)*(f[n](x)),n=0..m-1)+ta*x^(3)*h*H*diff(f[m-1](x),x,x)-ta*x^(2)*h*H*diff(f[m-1](x),x),x),x)+_C1*x,x)+_C2*x,x)+_C3*x+_C4;  s1:=evalf(subs(x=0,f[m](x)))=0;  s2:=evalf(subs(x=0,diff(f[m](x),x)))=0;  s3:=evalf(subs(x=1,f[m](x)))=0;  s4:=evalf(subs(x=1,diff(f[m](x),x)))=0;   s:={s1,s2,s3,s4}:  f[m](x):=simplify(subs(solve(s,{_C1,_C2,_C3,_C4}),f[m](x)));  end do:

f(x):=sum(f[l](x),l=0..N):  hh:=evalf(subs(x=1,diff(f(x),x)));

plot(hh, h = -5 .. 5);

 

For Mathematica, code already exist to find a residual error for another problem(Not this) 

which is,

eq:

Bc:

Mathematica code:

waiting for users' responses.

Have a good day

Dear maple users,
Greetings.
How to plot residual error for BVP.
Here I have enclosed the file.rerror.mw
 

restart; with(plots)

fcns := {f(eta), g(eta)}:

bet := 0.:

eq1 := diff(f(eta), `$`(eta, 3))+(diff(f(eta), `$`(eta, 2)))*f(eta)+be*((diff(g(eta), `$`(eta, 1)))^2-(diff(g(eta), `$`(eta, 2)))*g(eta)) = 0:

eq2 := pr*lam*(diff(g(eta), `$`(eta, 3)))+(diff(g(eta), `$`(eta, 2)))*f(eta)-(diff(f(eta), `$`(eta, 2)))*g(eta) = 0:

bc := f(0) = 0, (D(f))(0) = 0, (D(f))(N) = 1, g(0) = 0, ((D@@2)(g))(0) = 0, (D(g))(N) = 1;

f(0) = 0, (D(f))(0) = 0, (D(f))(5) = 1, g(0) = 0, ((D@@2)(g))(0) = 0, (D(g))(5) = 1

(1)

R := dsolve(eval({bc, eq1, eq2}), fcns, type = numeric, method = bvp[midrich], output = listprocedure):

Sol_exact := dsolve(eval({bc, eq1, eq2}), fcns):

``


 

Download rerror.mw

Have a good day

 

Dear maple users,

How to plot a figure for different values of rk?

like rk=5,10,15,20:

jb.mw

Thanking you,

Waiting for replay.

 

Recently I posted a question "how to insert a loop".
Without my knowledge, the post is deleted.
Mention the reason for deleting the post.
 

Dear maple users,
Greetings.
I am solving an ode problem with an analytical solution.
programming running properly, but my plot not exact with the already existing article plot. 
how to get the exact plot.

Thanking you.

Code:JVB.mw
 

restart

N := 3;

3

 

1

(1)

dsolve(diff(f(x), `$`(x, 3)));

f(x) = (1/2)*_C1*x^2+_C2*x+_C3

(2)

Rf := 2*(diff(f[m-1](x), x, x, x))-(2*mh*mh)*(diff(f[m-1](x), x))+sum(f[m-1-n](x)*(diff(f[n](x), x)), n = 0 .. m-1)-bet*(sum(sum(2*f[m-1-n](x)*(diff(f[n-t](x), x))*(diff(f[t](x), x, x))+f[m-1-n](x)*f[n-t](x)*(diff(f[t](x), x, x, x))+x*(diff(f[m-1-n](x), x))*(diff(f[n-t](x), x))*(diff(f[t](x), x, x)), t = 0 .. n), n = 0 .. m-1));

2*(diff(diff(diff(f[m-1](x), x), x), x))-2*(diff(f[m-1](x), x))+sum(f[m-1-n](x)*(diff(f[n](x), x)), n = 0 .. m-1)-.2*(sum(sum(2*f[m-1-n](x)*(diff(f[n-t](x), x))*(diff(diff(f[t](x), x), x))+f[m-1-n](x)*f[n-t](x)*(diff(diff(diff(f[t](x), x), x), x))+x*(diff(f[m-1-n](x), x))*(diff(f[n-t](x), x))*(diff(diff(f[t](x), x), x)), t = 0 .. n), n = 0 .. m-1))

(3)

dsolve(diff(f[m](x), x, x, x)-CHI[m]*(diff(f[m-1](x), x, x, x)) = h*H*Rf, f[m](x));

f[m](x) = Int(Int(Int(CHI[m]*(diff(diff(diff(f[m-1](x), x), x), x))+2*h*(diff(diff(diff(f[m-1](x), x), x), x))-2*h*(diff(f[m-1](x), x))+h*(sum(f[m-1-n](x)*(diff(f[n](x), x)), n = 0 .. m-1))-(1/5)*h*(sum(sum(2*f[m-1-n](x)*(diff(f[n-t](x), x))*(diff(diff(f[t](x), x), x))+f[m-1-n](x)*f[n-t](x)*(diff(diff(diff(f[t](x), x), x), x))+x*(diff(f[m-1-n](x), x))*(diff(f[n-t](x), x))*(diff(diff(f[t](x), x), x)), t = 0 .. n), n = 0 .. m-1)), x), x)+_C1*x, x)+_C2*x+_C3

(4)

f[0](x) := 1-exp(x);

1-exp(x)

(5)

for m to N do CHI[m] := `if`(m > 1, 1, 0); f[m](x) := int(int(int(2*CHI[m]*(diff(f[m-1](x), x, x, x))-(2*h*H*mh*mh)*(diff(f[m-1](x), x))+h*H*(sum(f[m-1-n](x)*(diff(f[n](x), x)), n = 0 .. m-1)), x)-h*H*(sum(sum(2*f[m-1-n](x)*(diff(f[n-t](x), x))*(diff(f[t](x), x, x))+f[m-1-n](x)*f[n-t](x)*(diff(f[t](x), x, x, x))+x*(diff(f[m-1-n](x), x))*(diff(f[n-t](x), x))*(diff(f[t](x), x, x)), t = 0 .. n), n = 0 .. m-1))*bet, x)+_C1*x, x)+_C2*x+_C3; s1 := evalf(subs(x = 0, f[m](x))) = 0; s2 := evalf(subs(x = 0, diff(f[m](x), x))) = 0; s3 := evalf(subs(x = 1, f[m](x))) = 0; s := {s1, s2, s3}; f[m](x) := simplify(subs(solve(s, {_C1, _C2, _C3}), f[m](x))) end do:

f(x) := sum(f[l](x), l = 0 .. N);

1-0.7644444444e-1*exp(5.*x)*h^2*x-0.1333333333e-1*x^2*exp(5.*x)*h^2-2.675700596*exp(2.*x)*h^2*x-0.5876096022e-1*exp(6.*x)*h^3*x-0.9282030175e-2*x^2*exp(6.*x)*h^3+.9962792493*exp(3.*x)*h^3*x+.1647896790*exp(5.*x)*h^3*x+0.2066962962e-1*x^2*exp(5.*x)*h^3+3.357118680*exp(2.*x)*h^3*x-.3264340965*exp(4.*x)*h^3*x+0.3999999998e-1*exp(2.*x)*ln(exp(x))*h^2+58.61348006*h^3+1.023148148*h^2*x^3+0.1364197531e-1*ln(exp(x))*h^3*x^3-0.8954734530e-1*exp(2.*x)*h^3*x^4-.1353159884*x^3*exp(4.*x)*h^3+.7542645986*exp(3.*x)*h^3*x^2-0.2830138323e-1*x^3*h^3*exp(3.*x)-0.6455420536e-1*exp(x)*h^3*ln(exp(x))*x+0.4775858416e-1*exp(x)*h^3*ln(exp(x))*x^2+0.8888888887e-3*exp(x)*h^3*ln(exp(x))^2+8.400000000*h*exp(x)-exp(x)-0.6666666666e-1*h*ln(exp(x))+.1416666666*exp(4.*x)*h^2*x-.4790123458*exp(3.*x)*h^2*x+.1333333333*exp(3.*x)*h*x+.3791666665*exp(4.*x)*h^2-1.340020575*exp(3.*x)*h^2+.3111111109*exp(3.*x)*h+5.570191338*h^2*exp(2.*x)-.4500000000*h*exp(2.*x)-0.9874869443e-1*exp(6.*x)*h^3+.4125877323*exp(3.*x)*h^3-4.984787877*h^3*exp(2.*x)-.8010958741*exp(4.*x)*h^3+.3215641638*exp(5.*x)*h^3-5.930474628*h^2*x+36.04284024*exp(x)*h^3*x+8.324321524*x^2*h^2-.5362260993*h^3*x^3-6.207072379*exp(x)*x^2*h^3+1.664189246*exp(x)*h^3*x^3-8.237962963*h+.1200000000*exp(x)*h^2*ln(exp(x))+0.2222222222e-1*exp(3*x)*h*x+24.00299428*h^3*x-2.098561083*x^2*h^3-53.48457977*h^3*exp(x)+0.9949705035e-2*ln(exp(x))*h^3*x^4-0.7308641971e-2*ln(exp(x))*exp(4.*x)*h^3+0.8984910834e-2*ln(exp(x))*exp(3.*x)*h^3-0.3741666666e-1*ln(exp(x))*h^3*exp(2.*x)-.1188740741*exp(5.*x)*h^2-12.53662834*x^2*h+25.90916526*h^2*exp(x)-30.39962862*h^2-0.7499999999e-1*h*exp(2*x)+0.5185185185e-1*exp(3*x)*h+5.372840718*exp(x)*x^2*h^2-25.09181716*exp(x)*h^2*x+0.8976305409e-1*h^3*x^5+0.2158026099e-1*exp(7.*x)*h^3+0.8606919260e-1*h^3*x^4+0.5079365079e-3*x^3*exp(7.*x)*h^3-.3215468487*x^2*exp(4.*x)*h^3+0.1762236380e-1*exp(7.*x)*h^3*x+0.5048727639e-2*exp(7.*x)*x^2*h^3-3.116709690*exp(2.*x)*x^2*h^3+.1066289908*exp(2.*x)*h^3*x^3-8.527777777*h*x-0.2814814814e-2*ln(exp(x))*exp(4.*x)*h^3*x-0.1053497943e-2*ln(exp(x))*exp(3.*x)*h^3*x+0.4848332783e-1*h^3*x^6+.7462278773*h^2*x^4+.5519508187*exp(x)*h^3*x^4+0.9367631194e-1*exp(x)*h^3*ln(exp(x))+3.581893812*exp(2.*x)*x^2*h^2

 

 

NULL


 

Download JVB.mw

 

Analytical solution approach:

 

 

 

 

3 4 5 6 7 8 9 Page 5 of 10