130 Reputation

5 Badges

5 years, 167 days

MaplePrimes Activity

These are questions asked by Ahmed111

dchange gives the error when I try to convert pde into ode. Why?



pde1 := diff(u(x, t), t)-(diff(u(x, t), `$`(x, 2), t))+3*u(x, t)^2*(diff(u(x, t), x))-2*(diff(u(x, t), x))*(diff(u(x, t), `$`(x, 2)))-u(x, t)*(diff(u(x, t), `$`(x, 3))) = 0

diff(u(x, t), t)-(diff(diff(diff(u(x, t), t), x), x))+3*u(x, t)^2*(diff(u(x, t), x))-2*(diff(u(x, t), x))*(diff(diff(u(x, t), x), x))-u(x, t)*(diff(diff(diff(u(x, t), x), x), x)) = 0


trans1 := {seq(var[i] = tau[i], i = 2), FN = Y(zz), var[1] = (zz-(sum(lambda[i]*tau[i], i = 2)))/lambda[1]}

{FN = Y(zz), var[1] = (-lambda[2]*tau[2]+zz)/lambda[1], var[2] = tau[2]}


ode1 := dchange(trans1, pde, [Y(zz), zz, seq(tau[i], i = 2)])

Error, (in dchange/info) the number of new and old independent variables must be the same. Found {zz, tau[2]} as new, while {FN, var[1], var[2]} as old



diff(u(x, t), t), -(diff(diff(diff(u(x, t), t), x), x)), 3*u(x, t)^2*(diff(u(x, t), x)), -2*(diff(u(x, t), x))*(diff(diff(u(x, t), x), x)), -u(x, t)*(diff(diff(diff(u(x, t), x), x), x))



Download P_O.mw

I solved the differential equation using 'dsolve' and Maple returns it with fiver possible solutions. How can we get the single possible solution for w(x) if we assume c, g (constants) are positive? Also, can we convert JacobiSN() to a simple trigonometric or algebraic function?




q := (1/2)*(diff(w(x), x))^2+(1/8)*w(x)^4-(1/2)*c*w(x)^2-g = 0

(1/2)*(diff(w(x), x))^2+(1/8)*w(x)^4-(1/2)*c*w(x)^2-g = 0


dsolve((1/2)*(diff(w(x), x))^2+(1/8)*w(x)^4-(1/2)*c*w(x)^2-g = 0, {w(x)})

w(x) = (2*c+2*(c^2+2*g)^(1/2))^(1/2), w(x) = (-2*(c^2+2*g)^(1/2)+2*c)^(1/2), w(x) = -(2*c+2*(c^2+2*g)^(1/2))^(1/2), w(x) = -(-2*(c^2+2*g)^(1/2)+2*c)^(1/2), w(x) = 2*JacobiSN((1/2)*(-2*c+2*(c^2+2*g)^(1/2))^(1/2)*x+_C1, ((c*(c^2+2*g)^(1/2)-c^2-g)*g)^(1/2)/(c*(c^2+2*g)^(1/2)-c^2-g))*g/(g*(-c+(c^2+2*g)^(1/2)))^(1/2)




Download solve.mw

How to linearize eq (6) by neglecting all higher order terms i.e., epsilon[1]^2, epsilon[2]^2, epsilon[1]*epsilon[2]... etc? How to do it in maple?


Can we write v matrix in terms of matrix u? i.e., v=const*u.


We have the system with one discrete variable along x-axis (i.e. 'i' is discrete in the attached file) and other variable 't' is continuous. But maple return error.


1 2 3 4 5 6 7 Page 2 of 8