Christian Wolinski

MaplePrimes Activity


These are answers submitted by Christian Wolinski

Here is a procedure tha draws a cylinder from a specified base, along a vector and of a given radius and number of sides:

C := proc(d::list, v::list, r, n::posint)
local x, y, z, f;
description `Draws a cylinder with base at d along vector v, radius r, having n sides. Attach additional options for the plottools[cylinder] command used.`;

use LinearAlgebra in applyop(Normalize, {2, 3}, GramSchmidt([Vector(v), op(NullSpace(v))]), 2); end;
f := unapply(convert(add((% *~ [z, x, y])) + Vector(d), list), [x, y, z]);
use plottools in transform(f)(cylinder([0, 0, 0], r, 1, strips = n, _rest)); end;
end proc;

plots[display](seq(C([0, 0, 1], [10, 3, 10], 1, 40, op(opts)), opts = 
[[color = COLOUR(RGB, 0.2, 0.4, 0.2), transparency = 0, style = contour, thickness = 0, linestyle = 1], 
[color = green, transparency = 0.8, style = patchnogrid]]), 
scaling = constrained, orientation = [160, 45, 30], contours = 20, labels = ['x, y, z'], lightmodel = light4);

 

Thumb if You like.

 

F:=f->taylor(f, x, 4);
F(ln(1+x));
F(ln(1+sin(x)));
F(%%-%);

 

Thumb if You like.

Like before:

A := cos(5*t)=a*cos(t)^5+b*cos(t)^3*sin(t)^2+c*cos(t)*sin(t)^4;
collect(combine((lhs-rhs)(A)), {sin, cos});
solve({coeffs}(%, indets(%, dependent(t))));

 

Thumb if You like.

How is this different from this question you asked?
https://www.mapleprimes.com/questions/228216-Question-From-Maple

mul(1/(i+j),j=0..3);
sum(%,i=1..infinity)=1/18;

Try:

plots[pointplot]( [seq([i,S[i]],i=1..numelems(S))], style=line);

You are missing a condition, so it acts like a parameter.

Example:

dsys := {diff(s(x), x, x, x)+(1/2)*s(x)*(diff(s(x), x, x)) = 0, s(0) = 0, (D(s))(5) = 1};
other:=seq({D(s)(0)=i/10}, i=-8..1);;
sol:=seq(dsolve(dsys union cond,numeric), cond=[other]);
plots[display](map(plots[odeplot], [sol], 0..5));

 

Thumb if You like.

restart;
PDEtools[declare](f(x), prime = x);

N := 4;
F := sum(p^i*f[i](x), i = 0 .. N);
HPMEq := (1 - p)*(diff(F, `$`(x, 3))) + p*((diff(F, `$`(x, 3))) + 1/2*(diff(F, x, x))*F);
for i from 0 to N do equ[2][i] := coeff(HPMEq, p, i) = 0 end do;

cond[1][0] := f[0](0) = 0, (D(f[0]))(0) = 0, (D(f[0]))(5) = 1;
for j to N do cond[1][j] := f[j](0) = 0, (D(f[j]))(0) = 0, (D(f[j]))(5) = 0 end do;
for i from 0 to N do dsolve({cond[1][i], equ[2][i]}, f[i](x)); assign(%) end do;

g := evalf@unapply(simplify(sum(f[n](x), n = 0 .. N)),x);
convert(g(x), 'rational');  
subs(x = 2.4, diff(g(x), x));



Thumb if You like.

 

convert(A,set):
indets(%,name);
fsolve(%%, % , (x->(x=0..1))~(%));

 

Thumb if You like.

Try one of these :

Button("Deduct", Evaluate(f = '[work(3), work(2)]'));
Button("Deduct", Evaluate(f = 'proc() work(3);  work(2) end()'));

 

How about this:

2.55*10^(-90);
op(%);
%[1]/10^Digits;
evalf(%,3);

 

Do You mean :

N := 4;
f:=unapply(sum(p^i*x, i = 0 .. N), x);
HPMEq := (1-p)*(diff(f(x), x$3))+p*(diff(f(x), x$3)+(1/2)*(diff(f(x), x, x))*f(x));

Edit:

i := 'i':
N := 4;
F := sum(p^i*f[i](x), i = 0 .. N);
HPMEq := (1 - p)*(diff(F, `$`(x, 3))) + p*((diff(F, `$`(x, 3))) + 1/2*(diff(F, x, x))*F);
for i from 0 to N do equ[2][i] := coeff(HPMEq, p, i) = 0 end do;

Thumb if You like.

Read title.
                           

Shouldn't this be like:

MySolution:=proc(xl :: algebraic, is :: {float, integer}, x :: algebraic)
if type(is, integer) then
   return solve(xl=is,x);
elif type(is, float) then
   return solve(xl=is,x);
end if;
end proc; 

See:

?gfun,algeqtodiffeq
with(gfun);
algeqtodiffeq(y = y^4+y^2*z+1, y(z));


also look at:
?algcurves,algfun_series_sol

 

 

Thumb if You like.

4 5 6 7 8 9 10 Last Page 6 of 19