Christian Wolinski

MaplePrimes Activity


These are questions asked by Christian Wolinski

`debugger/no_output`;

What is the result of the following?

solve((4*t1+4*sqrt(t1^2-4*t2))>0,{t2});
 

[sqrt(-3)^1, sqrt(-3)^7];
map(indets, %, radnumext),
map(indets, %, radext),
map(indets, %, radical);


Is this going to be fixed/removed?

Could someone please exlain this behaviour:

indets('combinat:-binomial(i,j)', 'specfunc(combinat:-binomial)');
indets('combinat:-binomial(i,j)', specfunc('combinat:-binomial'));
indets('combinat:-binomial(i,j)', specfunc(combinat:-binomial));
indets(combinat:-binomial(i,j), specfunc(combinat:-binomial));


indets('combinat:-binomial(i,j)', 'specfunc(binomial)');
indets('combinat:-binomial(i,j)', specfunc('binomial'));
indets('combinat:-binomial(i,j)', specfunc(binomial));
indets(combinat:-binomial(i,j), specfunc(binomial));


indets('binomial(i,j)', 'specfunc(binomial)');
indets('binomial(i,j)', specfunc('binomial'));
indets('binomial(i,j)', specfunc(binomial));
indets(binomial(i,j), specfunc(binomial));

indets('binomial(i,j)', 'specfunc(combinat:-binomial)');
indets('binomial(i,j)', specfunc('combinat:-binomial'));
indets('binomial(i,j)', specfunc(combinat:-binomial));
indets(binomial(i,j), specfunc(combinat:-binomial));

 

How does this happen, that is, what is the algorithm failure here? 

for L in [[4, 2], [8, 5], [9, 2], [16, 14], [25, 2]] do
traperror(MinimumPermutationRepresentationDegree(SmallGroup(op(L))))
end do;

1 2 3 4 5 6 7 Last Page 1 of 11