## 15 Reputation

9 years, 234 days

## fsolve for system of nonlinear of equati...

Maple

When I used fsolve command for a system of the nonlinear algebraic equation, the result will be one set of solution

for example:

f := x+2*y = 3;
g := y+1/x = 1;
fsolve({f, g});
{x = 2.000000000, y = 0.5000000000}

where when we use the solve command

we will get

solve({f, g});

{x = -1, y = 2}, { x = 2, y = 0.5 }.

The question is:  why fsolve command give the values of x and y (x=2 and y=0.5 ) and ignore ({x = -1, y = 2})?

why didnt give ({x = -1, y = 2}). and ignore (x=2 and y=0.5 )?

## How get answer of this integral...

Maple 17

How get answer of this integral

int(1/u.t.exp(-t/u), t = 0 .. infinity)

## fsolve and solve not working...

hi

i am trying to solve nonlinear system of equations>

But i faced problems with fsolve command and solve command

thank you.

i attached the problem if any one can help meto_ask.mw

 > resatart;
 (1)
 > E[1]:=471.018201448812350417026549714*C[2]*C[1]+148.215735866021516352269641351*C[3]*C[1]+1819.06587325966981030289478684*C[1]^3+520.398873394086389608807266267*C[1]^2+91.6935836202883451116448236302*C[1]+50.4730912279207745584225849550*C[2]+19.9085633544913263914456592743*C[3]+7.37047428400435090736231078968+2058.68551751777751319606573790*C[1]^2*C[2]+538.947230507659865581021915944*C[1]^2*C[3]+5845.71206131980239307198520604*C[1]^3*C[2]+69.7127022912194568273754946252*C[2]*C[3]+714.578012051731012130317887974*C[2]^2*C[1]+1335.12741025874305723396688959*C[3]*C[1]^3+12157.6789376307684367951252086*C[1]^4*C[2]+2649.25449662999887750280740574*C[2]^2*C[1]^2+14295.0784862597862660994822740*C[1]^8+15419.2846919327017114194783308*C[1]^7+12988.7517416642139784208462738*C[1]^6+16.8382038872893957093383440000*C[2]^4+70.8332628196190412620305577015*C[2]^3+1.44270946696121179778587859413*C[3]^3+4510.00238293949012248750841678*C[1]^4+8603.52635510176910780764444620*C[1]^5+98.8104905773476764461233724605*C[2]^2+10.1537285012728093021569041975*C[3]^2+982.222581518989031760243574949*C[1]^11+4638.21478259707435511949025320*C[1]^10+10052.6606516341018431728672421*C[1]^9+407.687063314179709424921418616*C[3]*C[2]*C[1]+75.7719174928022814213736862098*C[3]^2*C[2]*C[1]+25.2573058309340935640075160001*C[3]*C[2]^3+6.31432645773352351256040203496*C[1]*C[3]^3+12.6286529154670467820037580001*C[2]^2*C[3]^2+2.10477548591117446366729300002*C[2]*C[3]^3+211.344764831208915814670185548*C[3]^2*C[1]^3+7.20005467320229588757253538206*C[1]^2*C[3]^3+111.061430002472320297142331967*C[1]*C[2]^4+238.500386718071412970815287708*C[1]^4*C[3]^2+2470.41109018725090594289626356*C[2]^3*C[1]^3+245.201283148587317451118521393*C[2]^4*C[1]^2+181.129142851463591068444931825*C[2]^4*C[1]^3+2988.37811797198976000003713722*C[3]*C[1]^6+109.721226223930092622823355221*C[1]^5*C[3]^2+11719.3084513103578461807709227*C[1]^5*C[2]^2+2768.20160910310649927384469736*C[1]^4*C[2]^3+565.318306286272203162846540832*C[1]^8*C[3]+10932.5561693883776137371116117*C[1]^8*C[2]+2904.27246127876533797534297274*C[1]^7*C[2]^2+1952.53821736667546565020861980*C[3]*C[1]^7+8861.99977348975008001821282156*C[2]^2*C[1]^6+1254.10257521815148306369855874*C[2]^3*C[1]^5+19097.0760464300655744068743926*C[1]^7*C[2]+2811.03926218004500859025906710*C[1]^9*C[2]+57.4530755155979171964227079426*C[1]*C[3]^2+836.065308595115722315610440362*C[3]*C[2]^2*C[1]^2+168.144436791995138074477654505*C[1]^2*C[2]*C[3]^2+111.061430002472320297142331967*C[3]*C[1]*C[2]^3+27.7653575006180800742855829918*C[1]*C[2]^2*C[3]^2+3287.26031145537499942195550694*C[3]*C[1]^4*C[2]+127.200206249638084450380203222*C[1]^3*C[2]*C[3]^2+1244.40467444431430442109001683*C[3]*C[1]^3*C[2]^2+122.600641574293658725559260697*C[3]*C[2]^3*C[1]^2+2976.40437278655359156395744743*C[3]*C[1]^5*C[2]+704.866518858564769916472506595*C[3]*C[1]^4*C[2]^2+1138.98062679722733273662076856*C[3]*C[1]^6*C[2]+2445.22760310248377117380837984*C[1]^3*C[2]*C[3]+1302.58340353182418292173788075*C[1]^2*C[2]*C[3]+358.002894560559015938580075092*C[1]*C[2]^2*C[3]+1346.85403641174851926917778882*C[2]^3*C[1]^2+21853.3314580455402045658443233*C[1]^6*C[2]+3064.67804343975531590307429378*C[1]^5*C[3]+18831.8659547488267980067894851*C[1]^5*C[2]+2386.63766423133333668246261663*C[1]^4*C[3]+10051.2504836101574266428345548*C[1]^4*C[2]^2+6283.05695591453291326103369848*C[1]^3*C[2]^2+76.6041006874638884531740720781*C[2]^2*C[3]+136.001112450833566039453512948*C[1]^2*C[3]^2+463.432730811777094292148621626*C[1]*C[2]^3+23.4791535727496075066511538019*C[2]*C[3]^2;
 (2)
 > E[2]:=197.620981154695352892246744921*C[2]*C[1]+69.7127022912194568273754946252*C[3]*C[1]+686.228505839259171065355245966*C[1]^3+235.509100724406175208513274857*C[1]^2+50.4730912279207745584225849550*C[1]+26.5447511393217685219275456990*C[2]+13.2723755696608842609637728496*C[3]+4.91364952266956727157487385979+714.578012051731012130317887974*C[1]^2*C[2]+203.843531657089854712460709308*C[1]^2*C[3]+1766.16966441999925166853827049*C[1]^3*C[2]+27.0766093367274914724184111932*C[2]*C[3]+212.499788458857123786091673104*C[2]^2*C[1]+434.194467843941394307245960251*C[3]*C[1]^3+3141.52847795726645663051684924*C[1]^4*C[2]+695.149096217665641438222932439*C[2]^2*C[1]^2+2387.13450580375819680085929907*C[1]^8+3121.90449400650574350940633190*C[1]^7+3138.64432579147113300113158085*C[1]^6+7.69445049045979625485801916864*C[2]^3+.961806311307474531857252396085*C[3]^3+1461.42801532995059826799630151*C[1]^4+2431.53578752615368735902504171*C[1]^5+27.0766093367274914724184111932*C[2]^2+6.76915233418187286810460279831*C[3]^2+281.103926218004500859025906710*C[1]^10+1214.72846326537529041523462352*C[1]^9+153.208201374927776906348144156*C[3]*C[2]*C[1]+25.2573058309340935640075160002*C[3]^2*C[2]*C[1]+2.10477548591117446366729300002*C[1]*C[3]^3+56.0481455973317126914925515018*C[3]^2*C[1]^3+31.8000515624095211125950508054*C[1]^4*C[3]^2+326.935044198116423268158028524*C[2]^3*C[1]^3+496.067395464425598593992907905*C[3]*C[1]^6+1660.92096546186389956430681841*C[1]^5*C[2]^2+181.129142851463591068444931825*C[1]^4*C[2]^3+726.068115319691334493835743184*C[1]^8*C[2]+162.711518113889618962374395509*C[3]*C[1]^7+627.051287609075741531849279370*C[2]^2*C[1]^6+2531.99993528278573714806080616*C[1]^7*C[2]+23.4791535727496075066511538019*C[1]*C[3]^2+166.592145003708480445713497950*C[3]*C[2]^2*C[1]^2+27.7653575006180800742855829918*C[1]^2*C[2]*C[3]^2+622.202337222157152210545008414*C[3]*C[1]^4*C[2]+122.600641574293658725559260697*C[3]*C[1]^3*C[2]^2+281.946607543425907966589002638*C[3]*C[1]^5*C[2]+557.376872396743814877073626908*C[1]^3*C[2]*C[3]+358.002894560559015938580075092*C[1]^2*C[2]*C[3]+75.7719174928022806920225480003*C[1]*C[2]^2*C[3]+222.122860004944640594284663933*C[2]^3*C[1]^2+3906.43615043678594872692364090*C[1]^6*C[2]+657.452062291074999884391101389*C[1]^5*C[3]+4020.50019344406297065713382194*C[1]^5*C[2]+611.306900775620942793452094961*C[1]^4*C[3]+1852.80831764043817945717219767*C[1]^4*C[2]^2+1346.85403641174851926917778882*C[1]^3*C[2]^2+11.5416757356896943822870287530*C[2]^2*C[3]+37.8859587464011407106868431049*C[1]^2*C[3]^2+67.3528155491575828373533760000*C[1]*C[2]^3+5.77083786784484719114351437650*C[2]*C[3]^2;
 (3)
 > E[3]:=69.7127022912194568273754946252*C[2]*C[1]+20.3074570025456186043138083950*C[3]*C[1]+179.649076835886621860340638648*C[1]^3+74.1078679330107581761348206757*C[1]^2+19.9085633544913263914456592743*C[1]+13.2723755696608842609637728496*C[2]+6.63618778483044213048188642478*C[3]+2.45682476133478363578743692990+203.843531657089854712460709308*C[1]^2*C[2]+57.4530755155979171964227079426*C[1]^2*C[3]+434.194467843941394307245960251*C[1]^3*C[2]+13.5383046683637457362092055966*C[2]*C[3]+76.6041006874638884531740720781*C[2]^2*C[1]+90.6674083005557106929690086320*C[3]*C[1]^3+611.306900775620942793452094961*C[1]^4*C[2]+179.001447280279507969290037546*C[2]^2*C[1]^2+244.067277170834433206276077475*C[1]^8+426.911159710284251428576733889*C[1]^7+510.779673906625885983845715630*C[1]^6+3.84722524522989812742900958432*C[2]^3+.480903155653737265928626198044*C[3]^3+333.781852564685764308491722397*C[1]^4+477.327532846266667336492523326*C[1]^5+13.5383046683637457362092055966*C[2]^2+3.38457616709093643405230139915*C[3]^2+62.8131451429191336847607267591*C[1]^9+46.9583071454992150133023076038*C[3]*C[2]*C[1]+6.31432645773352339100187900006*C[3]^2*C[2]*C[1]+7.20005467320229588757253538206*C[3]^2*C[1]^3+40.8668805247645529085197535656*C[2]^3*C[1]^3+36.5737420746433642076077850736*C[3]*C[1]^6+140.973303771712953983294501319*C[1]^5*C[2]^2+162.711518113889618962374395509*C[1]^7*C[2]+4.32812840088363539335763578239*C[1]*C[3]^2+27.7653575006180800742855829918*C[3]*C[2]^2*C[1]^2+63.6001031248190422251901016108*C[3]*C[1]^4*C[2]+112.096291194663425382985103004*C[1]^3*C[2]*C[3]+75.7719174928022814213736862098*C[1]^2*C[2]*C[3]+25.2573058309340935640075160002*C[1]*C[2]^2*C[3]+55.5307150012361601485711659834*C[2]^3*C[1]^2+496.067395464425598593992907905*C[1]^6*C[2]+95.4001546872285651883261150834*C[1]^5*C[3]+657.452062291074999884391101389*C[1]^5*C[2]+105.672382415604457907335092774*C[1]^4*C[3]+311.101168611078576105272504207*C[1]^4*C[2]^2+278.688436198371907438536813454*C[1]^3*C[2]^2+5.77083786784484719114351437650*C[2]^2*C[3]+9.47148968660028526884060305244*C[1]^2*C[3]^2+25.2573058309340935640075160001*C[1]*C[2]^3+2.88541893392242359557175718826*C[2]*C[3]^2;
 (4)
 > fsolve({E[1]=0, E[2]=0,E[3]=0});
 (5)
 > solve({E[1]=0, E[2]=0, E[3]=0}, [C[1],C[2],C[3]]);
 >

## How to find the value of this integral...

Maple 16

u[0](x)=(1/GAMMA(0.5))*int((x-tau)^(0.5-1)*(tau^2+(tau^(1.5))*(8/(3))-tau-(2)*tau^0.5),tau=0..x);

I want to find the value of this integral

thank you

## exact solution of Fractional Differentia...

eq1 := fracdiff(u0(x), x, 0.5)= 0 with initial u0(0)=0

and i need the value of  u0(x) to find u1(x) from

eq2 := fracdiff(u1(x), x, 0.5)+f = 0   for some function f

thank you

 Page 1 of 1
﻿