Harry Garst

234 Reputation

5 Badges

18 years, 201 days

MaplePrimes Activity


These are questions asked by Harry Garst

Is het possible to use the circletimes symbol  ⊗ from Maple's Operators palette as an alias for KroneckerProduct(A,B)?

Instead of KroneckerProduct(A,B) :  A ⊗ B

An abbriviation would be convenient for the following expression:

A ⊗ B ⊗ C ⊗ D ⊗ E ⊗ F ⊗ G

 

I tried alias, macro, applyrule but was not successfull.

Is is possible or should I add it to the Maple 2019 wishlist?

Harry

 

factor_problem.mw

I want to factor the following polynomial:

Teller := 2*i1^4*i2*i3+2*i1^4*i2*i4+2*i1^4*i2*i5+2*i1^4*i3*i4+2*i1^4*i3*i5+2*i1^4*i4*i5+4*i1^3*i2^2*i3+4*i1^3*i2^2*i4+4*i1^3*i2^2*i5+4*i1^3*i2*i3^2+6*i1^3*i2*i3*i4+6*i1^3*i2*i3*i5+4*i1^3*i2*i4^2+6*i1^3*i2*i4*i5+4*i1^3*i2*i5^2+4*i1^3*i3^2*i4+4*i1^3*i3^2*i5+4*i1^3*i3*i4^2+6*i1^3*i3*i4*i5+4*i1^3*i3*i5^2+4*i1^3*i4^2*i5+4*i1^3*i4*i5^2+2*i1^2*i2^3*i3+2*i1^2*i2^3*i4+2*i1^2*i2^3*i5+4*i1^2*i2^2*i3^2+6*i1^2*i2^2*i3*i4+6*i1^2*i2^2*i3*i5+4*i1^2*i2^2*i4^2+6*i1^2*i2^2*i4*i5+4*i1^2*i2^2*i5^2+2*i1^2*i2*i3^3+6*i1^2*i2*i3^2*i4+6*i1^2*i2*i3^2*i5+6*i1^2*i2*i3*i4^2+24*i1^2*i2*i3*i4*i5+6*i1^2*i2*i3*i5^2+2*i1^2*i2*i4^3+6*i1^2*i2*i4^2*i5+6*i1^2*i2*i4*i5^2+2*i1^2*i2*i5^3+2*i1^2*i3^3*i4+2*i1^2*i3^3*i5+4*i1^2*i3^2*i4^2+6*i1^2*i3^2*i4*i5+4*i1^2*i3^2*i5^2+2*i1^2*i3*i4^3+6*i1^2*i3*i4^2*i5+6*i1^2*i3*i4*i5^2+2*i1^2*i3*i5^3+2*i1^2*i4^3*i5+4*i1^2*i4^2*i5^2+2*i1^2*i4*i5^3+2*i1*i2^3*i3*i4+2*i1*i2^3*i3*i5+2*i1*i2^3*i4*i5+4*i1*i2^2*i3^2*i4+4*i1*i2^2*i3^2*i5+4*i1*i2^2*i3*i4^2+6*i1*i2^2*i3*i4*i5+4*i1*i2^2*i3*i5^2+4*i1*i2^2*i4^2*i5+4*i1*i2^2*i4*i5^2+2*i1*i2*i3^3*i4+2*i1*i2*i3^3*i5+4*i1*i2*i3^2*i4^2+6*i1*i2*i3^2*i4*i5+4*i1*i2*i3^2*i5^2+2*i1*i2*i3*i4^3+6*i1*i2*i3*i4^2*i5+6*i1*i2*i3*i4*i5^2+2*i1*i2*i3*i5^3+2*i1*i2*i4^3*i5+4*i1*i2*i4^2*i5^2+2*i1*i2*i4*i5^3+2*i1*i3^3*i4*i5+4*i1*i3^2*i4^2*i5+4*i1*i3^2*i4*i5^2+2*i1*i3*i4^3*i5+4*i1*i3*i4^2*i5^2+2*i1*i3*i4*i5^3+4*i1^3*i2*i3+4*i1^3*i2*i4+4*i1^3*i2*i5+4*i1^3*i3*i4+4*i1^3*i3*i5+4*i1^3*i4*i5+8*i1^2*i2^2*i3+8*i1^2*i2^2*i4+8*i1^2*i2^2*i5+8*i1^2*i2*i3^2+12*i1^2*i2*i3*i4+12*i1^2*i2*i3*i5+8*i1^2*i2*i4^2+12*i1^2*i2*i4*i5+8*i1^2*i2*i5^2+8*i1^2*i3^2*i4+8*i1^2*i3^2*i5+8*i1^2*i3*i4^2+12*i1^2*i3*i4*i5+8*i1^2*i3*i5^2+8*i1^2*i4^2*i5+8*i1^2*i4*i5^2+4*i1*i2^3*i3+4*i1*i2^3*i4+4*i1*i2^3*i5+8*i1*i2^2*i3^2+12*i1*i2^2*i3*i4+12*i1*i2^2*i3*i5+8*i1*i2^2*i4^2+12*i1*i2^2*i4*i5+8*i1*i2^2*i5^2+4*i1*i2*i3^3+12*i1*i2*i3^2*i4+12*i1*i2*i3^2*i5+12*i1*i2*i3*i4^2+48*i1*i2*i3*i4*i5+12*i1*i2*i3*i5^2+4*i1*i2*i4^3+12*i1*i2*i4^2*i5+12*i1*i2*i4*i5^2+4*i1*i2*i5^3+4*i1*i3^3*i4+4*i1*i3^3*i5+8*i1*i3^2*i4^2+12*i1*i3^2*i4*i5+8*i1*i3^2*i5^2+4*i1*i3*i4^3+12*i1*i3*i4^2*i5+12*i1*i3*i4*i5^2+4*i1*i3*i5^3+4*i1*i4^3*i5+8*i1*i4^2*i5^2+4*i1*i4*i5^3+4*i2^3*i3*i4+4*i2^3*i3*i5+4*i2^3*i4*i5+8*i2^2*i3^2*i4+8*i2^2*i3^2*i5+8*i2^2*i3*i4^2+12*i2^2*i3*i4*i5+8*i2^2*i3*i5^2+8*i2^2*i4^2*i5+8*i2^2*i4*i5^2+4*i2*i3^3*i4+4*i2*i3^3*i5+8*i2*i3^2*i4^2+12*i2*i3^2*i4*i5+8*i2*i3^2*i5^2+4*i2*i3*i4^3+12*i2*i3*i4^2*i5+12*i2*i3*i4*i5^2+4*i2*i3*i5^3+4*i2*i4^3*i5+8*i2*i4^2*i5^2+4*i2*i4*i5^3+4*i3^3*i4*i5+8*i3^2*i4^2*i5+8*i3^2*i4*i5^2+4*i3*i4^3*i5+8*i3*i4^2*i5^2+4*i3*i4*i5^3+i1^4+3*i1^3*i2+3*i1^3*i3+3*i1^3*i4+3*i1^3*i5+3*i1^2*i2^2+6*i1^2*i2*i3+6*i1^2*i2*i4+6*i1^2*i2*i5+3*i1^2*i3^2+6*i1^2*i3*i4+6*i1^2*i3*i5+3*i1^2*i4^2+6*i1^2*i4*i5+3*i1^2*i5^2+i1*i2^3+3*i1*i2^2*i3+3*i1*i2^2*i4+3*i1*i2^2*i5+3*i1*i2*i3^2+10*i1*i2*i3*i4+10*i1*i2*i3*i5+3*i1*i2*i4^2+10*i1*i2*i4*i5+3*i1*i2*i5^2+i1*i3^3+3*i1*i3^2*i4+3*i1*i3^2*i5+3*i1*i3*i4^2+10*i1*i3*i4*i5+3*i1*i3*i5^2+i1*i4^3+3*i1*i4^2*i5+3*i1*i4*i5^2+i1*i5^3+4*i2^2*i3*i4+4*i2^2*i3*i5+4*i2^2*i4*i5+4*i2*i3^2*i4+4*i2*i3^2*i5+4*i2*i3*i4^2+4*i2*i3*i5^2+4*i2*i4^2*i5+4*i2*i4*i5^2+4*i3^2*i4*i5+4*i3*i4^2*i5+4*i3*i4*i5^2

What is the best strategy using Maple(latest version)? In a previous, less complicated example, the polynomial could be not be factored in a single expression, but I was succesfull to factor it in multiple factors.

kind regards,

Harry Garst


 

NULL

restart; with(LinearAlgebra)

kernelopts(version); interface(version)

`Maple 2017.3, X86 64 WINDOWS, Sep 27 2017, Build ID 1265877`

 

`Standard Worksheet Interface, Maple 2017.3, Windows 10, September 27 2017 Build ID 1265877`

(1)



The following equation contains so many regularities, that it is tantalizing to find a compact matrix formulation.
I found a matrix expression, but it seems unnecessairy complex. Is there a Maple procedure that can help me to find a more concise matrix formulation?

eq1 := i2*i3*i4*(i2+i3+i4)+i1*i3*i4*(i1+i3+i4)+i1*i2*i4*(i1+i2+i4)+i1*i2*i3*(i1+i2+i3)

i2*i3*i4*(i2+i3+i4)+i1*i3*i4*(i1+i3+i4)+i1*i2*i4*(i1+i2+i4)+i1*i2*i3*(i1+i2+i3)

(2)

expand(eq1)

i1^2*i2*i3+i1^2*i2*i4+i1^2*i3*i4+i1*i2^2*i3+i1*i2^2*i4+i1*i2*i3^2+i1*i2*i4^2+i1*i3^2*i4+i1*i3*i4^2+i2^2*i3*i4+i2*i3^2*i4+i2*i3*i4^2

(3)

V := Matrix(4, 1, [i1, i2, i3, i4])

Matrix(%id = 18446745919887783806)

(4)

one := Matrix(4, 1, 1)

Matrix(%id = 18446745919887784886)

(5)

This matrix expression works, but seems overly complex. Using Maple, is there a way to simplify it?

Trace(MatrixScalarMultiply(one^%T.(V.one^%T-DiagonalMatrix(Diagonal(V.one^%T))).convert(Diagonal(Adjoint(V.one^%T-DiagonalMatrix(Diagonal(V.one^%T)))), Matrix), 1/2))-eq1

0

(6)

Alternatively, but also not very simple:

Trace(DiagonalMatrix(Diagonal(MatrixScalarMultiply(1/(V.one^%T-DiagonalMatrix(Diagonal(V.one^%T))), (1/2)*Determinant(V.one^%T-DiagonalMatrix(Diagonal(V.one^%T)))))).(KroneckerProduct(V^%T.one, IdentityMatrix(4))-DiagonalMatrix(V)))-eq1

0

(7)

Obviously, this does not help:

A, B := LinearAlgebra:-GenerateMatrix([eq1], [x])

Matrix(%id = 18446745919887762006), Vector[column](%id = 18446745919887761886)

(8)

NULL


 

Download Matrix_formulation.mw

Dear maple experts,

as far as I know premultiplication of matrix A with matrix B is only possible if the number of columns of A is equal to the number of rows of B (matrices are conformable). Not so in Maple: strange.mw

I expected an error message, so I would receive feedback that I made an error.

what's going on?

kind regards,

Harry Garst

I probably worked too hard, but this result seems strange to me:

In a second example (not shown here, but in atttached file) all goes well. It is probably very simple, but at this moment I better go for a walk outside.

best regards,

Harry Garst

mapleprimes.mw

2 3 4 5 6 7 8 Page 4 of 10