J4James

355 Reputation

12 Badges

12 years, 119 days

MaplePrimes Activity


These are answers submitted by J4James

restart:
with( RealDomain ):
#assume( x>0, y>0, x < y);
solve({x/y = (1/128)*y, (1/16)*x = 16/y},{x,y});
{x = 8, y = 32}

 

``

restart:

with(DEtools):

ode := diff(y(x),x) =2*y(x)*(y(x)-4);

diff(y(x), x) = 2*y(x)*(y(x)-4)

(1)

DEplot(ode,y(x),x=-1..1,y=-2..7.40,arrows=medium,linecolor=black);

 

 

Download Deplot.mw

 

``

restart:with(plots):

p:=[[0.7,0.3000],[1,0.2000208010],[1.3,0.010]];

[[.7, .3000], [1, .2000208010], [1.3, 0.10e-1]]

(1)

display(pointplot(p,color=[red]),pointplot(p,connect=true),labels = ["K","(newton@@5)(.2)"]);

 

 

 

 

Download CEVplot.mw

 

de1 := dsolve(d1, numeric,method = bvp,abserr=1*10^(-0));

 

abserr.mw

f(x) := -(2*(exp(1)-1))*exp(-3*x)/exp(-3)+(3*exp(1)-2)*exp(-3*x)*x/exp(-3);

plot(f(x),x=1..10);

 

restart:
ode := diff(f(x), x$3)-(diff(f(x), x$2))+2*(diff(f(x), x$1));
ics:=D(f)(0)=0,f(0)=1,(D@D)(f)(0)=0;
dsolve({ode,ics});
                         f(x) = 1

Have a look.

Thanks

mprimesshootingmetho.mws

1 2 3 4 Page 4 of 4