## 220 Reputation

4 years, 104 days

## Reducing the time of process...

Maple

Hello.

Is there a way to reduce the time of the process of calculations in maple?

I have 26 coupled simple algebraic equations. But still, I could not get any solution for them.

My codes are as follows:

restart;
eq[1] := d[0] = 1:
eq[2] := d[0] + d[1] + d[2] + d[3] + d[4] + d[5] + d[6] + d[7] = 0:
eq[3] := b[0] = 1:
eq[4] := b[0] + b[1] + b[2] + b[3] + b[4] + b[5] + b[6] + b[7] = 0:
eq[5] := a[0] = -0.5:
eq[6] := d[1] = 1 + 1.0*a[2]:
eq[7] := a[0] + a[1] + a[2] + a[3] + a[4] + a[5] + a[6] + a[7] + a[8] + a[9] = 0.5:
eq[8] := d[1] + 2*d[2] + 3*d[3] + 4*d[4] + 5*d[5] + 6*d[6] + 7*d[7] = 1.0*a[2] + 3.0*a[3] + 6.0*a[4] + 10.0*a[5] + 15.0*a[6] + 21.0*a[7] + 28.0*a[8] + 36.0*a[9]:
eq[9] := 24*a[4] - 2.104513094*a[1]*a[2] + 6.313539282*a[0]*a[3] + 5.165076420*b[1] + 5.261282735*d[1] = 0:
eq[10] := -88.3895499*a[7]^2 - 191.5106915*a[7]*a[8] - 176.7790999*a[7]*a[9] - 117.8527333*a[8]^2 - 252.5415715*a[8]*a[9] - 151.5249428*a[9]^2 + 25.25415713*a[0]*a[4] + 63.13539282*a[0]*a[5] + 126.2707856*a[0]*a[6] + 220.9738749*a[0]*a[7] + 353.5581998*a[0]*a[8] + 530.3372997*a[0]*a[9] + 12.62707857*a[1]*a[4] + 42.09026188*a[1]*a[5] + 94.70308919*a[1]*a[6] + 176.7790999*a[1]*a[7] + 294.6318332*a[1]*a[8] + 454.5748283*a[1]*a[9] - 4.209026188*a[2]^2 - 12.62707857*a[2]*a[3] - 8.41805237*a[2]*a[4] + 10.52256547*a[2]*a[5] + 50.50831422*a[2]*a[6] + 117.8527333*a[2]*a[7] + 218.8693618*a[2]*a[8] + 359.8717391*a[2]*a[9] - 12.62707857*a[3]^2 - 31.56769641*a[3]*a[4] - 25.25415713*a[3]*a[5] + 50.5083143*a[3]*a[7] + 132.5843249*a[3]*a[8] + 252.5415713*a[3]*a[9] - 25.25415713*a[4]^2 - 58.92636665*a[4]*a[5] - 50.5083142*a[4]*a[6] - 18.9406178*a[4]*a[7] + 42.0902619*a[4]*a[8] + 138.8978642*a[4]*a[9] - 42.09026188*a[5]^2 - 94.7030892*a[5]*a[6] - 84.1805237*a[5]*a[7] - 46.2992881*a[5]*a[8] + 25.2541571*a[5]*a[9] - 63.1353929*a[6]^2 - 138.8978642*a[6]*a[7] - 126.2707857*a[6]*a[8] - 82.0760107*a[6]*a[9] - 2.104513094*a[1]*a[2] + 6.313539282*a[0]*a[3] + 26.30641368*d[5] + 31.56769641*d[6] + 36.82897914*d[7] + 15.78384820*d[3] + 21.04513094*d[4] + 5.261282735*d[1] + 10.52256547*d[2] + 36.15553494*b[7] + 25.82538210*b[5] + 30.99045852*b[6] + 10.33015284*b[2] + 15.49522926*b[3] + 20.66030568*b[4] + 5.165076420*b[1] + 3024.*a[9] + 360.*a[6] + 840.*a[7] + 1680.*a[8] + 24.*a[4] + 120.*a[5] = 0:
eq[11] := 120.*a[5] - 4.209026188*a[2]^2 + 25.25415713*a[0]*a[4] + 10.33015284*b[2] + 10.52256547*d[2] = 0:
eq[12] := -972.2850495*a[7]^2 - 2298.128299*a[7]*a[8] - 2298.128298*a[7]*a[9] - 1532.085532*a[8]^2 - 3535.581998*a[8]*a[9] - 2272.874142*a[9]^2 + 25.25415713*a[0]*a[4] + 126.2707856*a[0]*a[5] + 378.8123569*a[0]*a[6] + 883.8954995*a[0]*a[7] + 1767.790999*a[0]*a[8] + 3182.023798*a[0]*a[9] + 25.25415713*a[1]*a[4] + 126.2707856*a[1]*a[5] + 378.8123569*a[1]*a[6] + 883.8954995*a[1]*a[7] + 1767.790999*a[1]*a[8] + 3182.023798*a[1]*a[9] - 4.209026188*a[2]^2 - 25.25415713*a[2]*a[3] - 25.25415713*a[2]*a[4] + 42.09026184*a[2]*a[5] + 252.5415713*a[2]*a[6] + 707.1163996*a[2]*a[7] + 1532.085532*a[2]*a[8] + 2878.973912*a[2]*a[9] - 37.88123569*a[3]^2 - 126.2707857*a[3]*a[4] - 126.2707857*a[3]*a[5] + 353.5581998*a[3]*a[7] + 1060.674599*a[3]*a[8] + 2272.874141*a[3]*a[9] - 126.2707857*a[4]^2 - 353.5581998*a[4]*a[5] - 353.5581998*a[4]*a[6] - 151.5249424*a[4]*a[7] + 378.812357*a[4]*a[8] + 1388.978642*a[4]*a[9] - 294.6318332*a[5]^2 - 757.6247134*a[5]*a[6] - 757.624714*a[5]*a[7] - 462.992880*a[5]*a[8] + 277.795729*a[5]*a[9] - 568.2185354*a[6]^2 - 1388.978642*a[6]*a[7] - 1388.978642*a[6]*a[8] - 984.912128*a[6]*a[9] + 105.2256547*d[5] + 157.8384820*d[6] + 220.9738748*d[7] + 31.56769640*d[3] + 63.13539282*d[4] + 10.52256547*d[2] + 216.9332096*b[7] + 103.3015284*b[5] + 154.9522926*b[6] + 10.33015284*b[2] + 30.99045852*b[3] + 61.98091704*b[4] + 15120.*a[9] + 720.*a[6] + 2520.*a[7] + 6720.*a[8] + 120.*a[5] = 0:
eq[13] := 720.*a[6] - 25.25415713*a[2]*a[3] + 25.25415713*a[1]*a[4] + 126.2707856*a[0]*a[5] + 30.99045852*b[3] + 31.56769640*d[3] = 0:
eq[14] := -9722.850492*a[7]^2 - 25279.41129*a[7]*a[8] - 27577.53959*a[7]*a[9] - 18385.02639*a[8]^2 - 45962.56593*a[8]*a[9] - 31820.23799*a[9]^2 + 126.2707856*a[0]*a[5] + 757.6247138*a[0]*a[6] + 2651.686498*a[0]*a[7] + 7071.163996*a[0]*a[8] + 15910.11899*a[0]*a[9] + 25.25415713*a[1]*a[4] + 252.5415712*a[1]*a[5] + 1136.437071*a[1]*a[6] + 3535.581998*a[1]*a[7] + 8838.954995*a[1]*a[8] + 19092.14279*a[1]*a[9] - 25.25415713*a[2]*a[3] - 50.50831424*a[2]*a[4] + 126.2707856*a[2]*a[5] + 1010.166285*a[2]*a[6] + 3535.581998*a[2]*a[7] + 9192.513195*a[2]*a[8] + 20152.81739*a[2]*a[9] - 75.76247138*a[3]^2 - 378.8123569*a[3]*a[4] - 505.0831425*a[3]*a[5] + 2121.349198*a[3]*a[7] + 7424.722196*a[3]*a[8] + 18182.99313*a[3]*a[9] - 505.0831426*a[4]^2 - 1767.790999*a[4]*a[5] - 2121.349199*a[4]*a[6] - 1060.674600*a[4]*a[7] + 3030.498859*a[4]*a[8] + 12500.80778*a[4]*a[9] - 1767.790999*a[5]^2 - 5303.372998*a[5]*a[6] - 6060.997709*a[5]*a[7] - 4166.935929*a[5]*a[8] + 2777.95729*a[5]*a[9] - 4545.748282*a[6]^2 - 12500.80779*a[6]*a[7] - 13889.78642*a[6]*a[8] - 10834.03341*a[6]*a[9] + 315.6769641*d[5] + 631.3539280*d[6] + 1104.869374*d[7] + 31.56769640*d[3] + 126.2707856*d[4] + 1084.666048*b[7] + 309.9045852*b[5] + 619.8091704*b[6] + 30.99045852*b[3] + 123.9618341*b[4] + 60480.*a[9] + 720.*a[6] + 5040.*a[7] + 20160.*a[8] - 2.*10^(-7)*a[3]*a[6] = 0:
eq[15] := 2.*d[2] + 5.261282735*a[0]*d[1] - 2.630641368*d[0] = 0:
eq[16] := 17.36935863*d[5] + 27.36935863*d[6] + 39.36935863*d[7] + 3.369358632*d[3] + 9.369358632*d[4] - 2.630641368*d[0] - 2.630641368*d[1] - 0.630641368*d[2] + 36.82897914*a[6]*d[7] + 5.261282735*a[7]*d[1] + 10.52256547*a[7]*d[2] + 15.78384820*a[7]*d[3] + 21.04513094*a[7]*d[4] + 26.30641368*a[7]*d[5] + 31.56769641*a[7]*d[6] + 36.82897914*a[7]*d[7] + 5.261282735*a[8]*d[1] + 10.52256547*a[8]*d[2] + 15.78384820*a[8]*d[3] + 21.04513094*a[8]*d[4] + 26.30641368*a[8]*d[5] + 31.56769641*a[8]*d[6] + 36.82897914*a[8]*d[7] + 5.261282735*a[9]*d[1] + 10.52256547*a[9]*d[2] + 15.78384820*a[9]*d[3] + 21.04513094*a[9]*d[4] + 26.30641368*a[9]*d[5] + 31.56769641*a[9]*d[6] + 36.82897914*a[9]*d[7] + 10.52256547*a[0]*d[2] + 15.78384820*a[0]*d[3] + 21.04513094*a[0]*d[4] + 26.30641368*a[0]*d[5] + 31.56769641*a[0]*d[6] + 36.82897914*a[0]*d[7] + 5.261282735*a[1]*d[1] + 10.52256547*a[1]*d[2] + 15.78384820*a[1]*d[3] + 21.04513094*a[1]*d[4] + 26.30641368*a[1]*d[5] + 31.56769641*a[1]*d[6] + 36.82897914*a[1]*d[7] + 5.261282735*a[2]*d[1] + 10.52256547*a[2]*d[2] + 15.78384820*a[2]*d[3] + 21.04513094*a[2]*d[4] + 26.30641368*a[2]*d[5] + 31.56769641*a[2]*d[6] + 36.82897914*a[2]*d[7] + 5.261282735*a[3]*d[1] + 10.52256547*a[3]*d[2] + 15.78384820*a[3]*d[3] + 21.04513094*a[3]*d[4] + 26.30641368*a[3]*d[5] + 31.56769641*a[3]*d[6] + 36.82897914*a[3]*d[7] + 5.261282735*a[4]*d[1] + 10.52256547*a[4]*d[2] + 15.78384820*a[4]*d[3] + 21.04513094*a[4]*d[4] + 26.30641368*a[4]*d[5] + 31.56769641*a[4]*d[6] + 36.82897914*a[4]*d[7] + 5.261282735*a[5]*d[1] + 10.52256547*a[5]*d[2] + 15.78384820*a[5]*d[3] + 21.04513094*a[5]*d[4] + 26.30641368*a[5]*d[5] + 31.56769641*a[5]*d[6] + 36.82897914*a[5]*d[7] + 5.261282735*a[6]*d[1] + 10.52256547*a[6]*d[2] + 15.78384820*a[6]*d[3] + 21.04513094*a[6]*d[4] + 26.30641368*a[6]*d[5] + 31.56769641*a[6]*d[6] + 5.261282735*a[0]*d[1] = 0:
eq[17] := 6.*d[3] + 5.261282735*a[1]*d[1] + 10.52256547*a[0]*d[2] - 2.630641368*d[1] = 0:
eq[18] := 46.84679316*d[5] + 104.2161518*d[6] + 191.5855104*d[7] - 1.891924104*d[3] + 13.47743453*d[4] - 2.630641368*d[1] - 5.261282736*d[2] + 441.9477498*a[6]*d[7] + 36.82897914*a[7]*d[1] + 84.18052376*a[7]*d[2] + 142.0546338*a[7]*d[3] + 210.4513094*a[7]*d[4] + 289.3705504*a[7]*d[5] + 378.8123569*a[7]*d[6] + 478.7767289*a[7]*d[7] + 42.09026188*a[8]*d[1] + 94.70308923*a[8]*d[2] + 157.8384820*a[8]*d[3] + 231.4964403*a[8]*d[4] + 315.6769641*a[8]*d[5] + 410.3800533*a[8]*d[6] + 515.6057081*a[8]*d[7] + 47.35154462*a[9]*d[1] + 105.2256547*a[9]*d[2] + 173.6223302*a[9]*d[3] + 252.5415713*a[9]*d[4] + 341.9833778*a[9]*d[5] + 441.9477497*a[9]*d[6] + 552.4346872*a[9]*d[7] + 10.52256547*a[0]*d[2] + 31.56769641*a[0]*d[3] + 63.13539282*a[0]*d[4] + 105.2256547*a[0]*d[5] + 157.8384820*a[0]*d[6] + 220.9738749*a[0]*d[7] + 5.261282735*a[1]*d[1] + 21.04513094*a[1]*d[2] + 47.35154461*a[1]*d[3] + 84.18052376*a[1]*d[4] + 131.5320684*a[1]*d[5] + 189.4061784*a[1]*d[6] + 257.8028540*a[1]*d[7] + 10.52256547*a[2]*d[1] + 31.56769641*a[2]*d[2] + 63.13539282*a[2]*d[3] + 105.2256547*a[2]*d[4] + 157.8384820*a[2]*d[5] + 220.9738748*a[2]*d[6] + 294.6318332*a[2]*d[7] + 15.78384820*a[3]*d[1] + 42.09026188*a[3]*d[2] + 78.91924103*a[3]*d[3] + 126.2707856*a[3]*d[4] + 184.1448957*a[3]*d[5] + 252.5415712*a[3]*d[6] + 331.4608123*a[3]*d[7] + 21.04513094*a[4]*d[1] + 52.61282735*a[4]*d[2] + 94.70308923*a[4]*d[3] + 147.3159166*a[4]*d[4] + 210.4513094*a[4]*d[5] + 284.1092676*a[4]*d[6] + 368.2897915*a[4]*d[7] + 26.30641368*a[5]*d[1] + 63.13539282*a[5]*d[2] + 110.4869374*a[5]*d[3] + 168.3610475*a[5]*d[4] + 236.7577231*a[5]*d[5] + 315.6769640*a[5]*d[6] + 405.1187706*a[5]*d[7] + 31.56769641*a[6]*d[1] + 73.65795829*a[6]*d[2] + 126.2707856*a[6]*d[3] + 189.4061784*a[6]*d[4] + 263.0641367*a[6]*d[5] + 347.2446605*a[6]*d[6] = 0:
eq[19] := 24.*d[4] + 10.52256547*a[2]*d[1] + 21.04513094*a[1]*d[2] + 31.56769641*a[0]*d[3] - 5.261282736*d[2] = 0:
eq[20] := 67.38717264*d[5] + 281.0807590*d[6] + 729.5130625*d[7] - 15.78384821*d[3] - 7.56769641*d[4] - 5.261282736*d[2] + 4861.425246*a[6]*d[7] + 220.9738749*a[7]*d[1] + 589.2636663*a[7]*d[2] + 1136.437070*a[7]*d[3] + 1894.061785*a[7]*d[4] + 2893.705504*a[7]*d[5] + 4166.935926*a[7]*d[6] + 5745.320746*a[7]*d[7] + 294.6318332*a[8]*d[1] + 757.6247138*a[8]*d[2] + 1420.546338*a[8]*d[3] + 2314.964404*a[8]*d[4] + 3472.446605*a[8]*d[5] + 4924.560640*a[8]*d[6] + 6702.874204*a[8]*d[7] + 378.8123569*a[9]*d[1] + 947.0308923*a[9]*d[2] + 1736.223302*a[9]*d[3] + 2777.957285*a[9]*d[4] + 4103.800534*a[9]*d[5] + 5745.320747*a[9]*d[6] + 7734.085620*a[9]*d[7] + 31.56769641*a[0]*d[3] + 126.2707856*a[0]*d[4] + 315.6769641*a[0]*d[5] + 631.3539282*a[0]*d[6] + 1104.869374*a[0]*d[7] + 21.04513094*a[1]*d[2] + 94.70308923*a[1]*d[3] + 252.5415712*a[1]*d[4] + 526.1282735*a[1]*d[5] + 947.0308923*a[1]*d[6] + 1546.817124*a[1]*d[7] + 10.52256547*a[2]*d[1] + 63.13539282*a[2]*d[2] + 189.4061784*a[2]*d[3] + 420.9026188*a[2]*d[4] + 789.1924103*a[2]*d[5] + 1325.843249*a[2]*d[6] + 2062.422832*a[2]*d[7] + 31.56769641*a[3]*d[1] + 126.2707856*a[3]*d[2] + 315.6769641*a[3]*d[3] + 631.3539281*a[3]*d[4] + 1104.869374*a[3]*d[5] + 1767.790999*a[3]*d[6] + 2651.686498*a[3]*d[7] + 63.13539282*a[4]*d[1] + 210.4513094*a[4]*d[2] + 473.5154462*a[4]*d[3] + 883.8954995*a[4]*d[4] + 1473.159166*a[4]*d[5] + 2272.874141*a[4]*d[6] + 3314.608123*a[4]*d[7] + 105.2256547*a[5]*d[1] + 315.6769641*a[5]*d[2] + 662.9216246*a[5]*d[3] + 1178.527333*a[5]*d[4] + 1894.061784*a[5]*d[5] + 2841.092676*a[5]*d[6] + 4051.187706*a[5]*d[7] + 157.8384820*a[6]*d[1] + 441.9477497*a[6]*d[2] + 883.8954995*a[6]*d[3] + 1515.249428*a[6]*d[4] + 2367.577230*a[6]*d[5] + 3472.446605*a[6]*d[6] = 0:
eq[21] := 2.119408818*b[2] + 6.176017503*a[0]*b[1] + 42.07215928*a[2] + 0.5*d[0] = 0:
eq[22] := 0.5*d[5] + 0.5*d[6] + 0.5*d[7] + 0.5*d[3] + 0.5*d[4] + 0.5*d[0] + 0.5*d[1] + 0.5*d[2] + 44.50758518*b[7] + 21.19408818*b[5] + 31.79113227*b[6] + 2.119408818*b[2] + 6.358226454*b[3] + 12.71645291*b[4] + 1514.597734*a[9] + 631.0823892*a[6] + 883.5153448*a[7] + 1178.020460*a[8] + 126.2164778*a[3] + 252.4329557*a[4] + 420.7215928*a[5] + 42.07215928*a[2] + 12.35203501*a[0]*b[2] + 18.52805251*a[0]*b[3] + 24.70407001*a[0]*b[4] + 30.88008752*a[0]*b[5] + 37.05610502*a[0]*b[6] + 43.23212252*a[0]*b[7] + 6.176017503*a[1]*b[1] + 12.35203501*a[1]*b[2] + 18.52805251*a[1]*b[3] + 24.70407001*a[1]*b[4] + 30.88008752*a[1]*b[5] + 37.05610502*a[1]*b[6] + 43.23212252*a[1]*b[7] + 6.176017503*a[2]*b[1] + 12.35203501*a[2]*b[2] + 18.52805251*a[2]*b[3] + 24.70407001*a[2]*b[4] + 30.88008752*a[2]*b[5] + 37.05610502*a[2]*b[6] + 43.23212252*a[2]*b[7] + 6.176017503*a[3]*b[1] + 12.35203501*a[3]*b[2] + 18.52805251*a[3]*b[3] + 24.70407001*a[3]*b[4] + 30.88008752*a[3]*b[5] + 37.05610502*a[3]*b[6] + 43.23212252*a[3]*b[7] + 6.176017503*a[4]*b[1] + 12.35203501*a[4]*b[2] + 18.52805251*a[4]*b[3] + 24.70407001*a[4]*b[4] + 30.88008752*a[4]*b[5] + 37.05610502*a[4]*b[6] + 43.23212252*a[4]*b[7] + 6.176017503*a[5]*b[1] + 12.35203501*a[5]*b[2] + 18.52805251*a[5]*b[3] + 24.70407001*a[5]*b[4] + 30.88008752*a[5]*b[5] + 37.05610502*a[5]*b[6] + 43.23212252*a[5]*b[7] + 6.176017503*a[6]*b[1] + 12.35203501*a[6]*b[2] + 18.52805251*a[6]*b[3] + 24.70407001*a[6]*b[4] + 30.88008752*a[6]*b[5] + 37.05610502*a[6]*b[6] + 43.23212252*a[6]*b[7] + 6.176017503*a[7]*b[1] + 12.35203501*a[7]*b[2] + 18.52805251*a[7]*b[3] + 24.70407001*a[7]*b[4] + 30.88008752*a[7]*b[5] + 37.05610502*a[7]*b[6] + 43.23212252*a[7]*b[7] + 6.176017503*a[8]*b[1] + 12.35203501*a[8]*b[2] + 18.52805251*a[8]*b[3] + 24.70407001*a[8]*b[4] + 30.88008752*a[8]*b[5] + 37.05610502*a[8]*b[6] + 43.23212252*a[8]*b[7] + 6.176017503*a[9]*b[1] + 12.35203501*a[9]*b[2] + 18.52805251*a[9]*b[3] + 24.70407001*a[9]*b[4] + 30.88008752*a[9]*b[5] + 37.05610502*a[9]*b[6] + 43.23212252*a[9]*b[7] + 6.176017503*a[0]*b[1] = 0:
eq[23] := 6.358226454*b[3] + 6.176017503*a[1]*b[1] + 12.35203501*a[0]*b[2] + 126.2164778*a[3] + 0.5*d[1] = 0:
eq[24] := 2.5*d[5] + 3.0*d[6] + 3.5*d[7] + 1.5*d[3] + 2.0*d[4] + 0.5*d[1] + d[2] + 222.5379259*b[7] + 63.58226454*b[5] + 127.1645291*b[6] + 6.358226454*b[3] + 25.43290582*b[4] + 10602.18414*a[9] + 2524.329557*a[6] + 4417.576724*a[7] + 7068.122760*a[8] + 126.2164778*a[3] + 504.8659114*a[4] + 1262.164778*a[5] + 12.35203501*a[0]*b[2] + 37.05610502*a[0]*b[3] + 74.11221004*a[0]*b[4] + 123.5203501*a[0]*b[5] + 185.2805251*a[0]*b[6] + 259.3927351*a[0]*b[7] + 6.176017503*a[1]*b[1] + 24.70407002*a[1]*b[2] + 55.58415753*a[1]*b[3] + 98.81628005*a[1]*b[4] + 154.4004376*a[1]*b[5] + 222.3366301*a[1]*b[6] + 302.6248576*a[1]*b[7] + 12.35203501*a[2]*b[1] + 37.05610502*a[2]*b[2] + 74.11221004*a[2]*b[3] + 123.5203501*a[2]*b[4] + 185.2805251*a[2]*b[5] + 259.3927351*a[2]*b[6] + 345.8569801*a[2]*b[7] + 18.52805251*a[3]*b[1] + 49.40814003*a[3]*b[2] + 92.64026255*a[3]*b[3] + 148.2244201*a[3]*b[4] + 216.1606126*a[3]*b[5] + 296.4488402*a[3]*b[6] + 389.0891027*a[3]*b[7] + 24.70407001*a[4]*b[1] + 61.76017503*a[4]*b[2] + 111.1683151*a[4]*b[3] + 172.9284901*a[4]*b[4] + 247.0407002*a[4]*b[5] + 333.5049452*a[4]*b[6] + 432.3212252*a[4]*b[7] + 30.88008752*a[5]*b[1] + 74.11221004*a[5]*b[2] + 129.6963676*a[5]*b[3] + 197.6325601*a[5]*b[4] + 277.9207877*a[5]*b[5] + 370.5610502*a[5]*b[6] + 475.5533477*a[5]*b[7] + 37.05610502*a[6]*b[1] + 86.46424505*a[6]*b[2] + 148.2244201*a[6]*b[3] + 222.3366301*a[6]*b[4] + 308.8008752*a[6]*b[5] + 407.6171552*a[6]*b[6] + 518.7854702*a[6]*b[7] + 43.23212252*a[7]*b[1] + 98.81628005*a[7]*b[2] + 166.7524726*a[7]*b[3] + 247.0407001*a[7]*b[4] + 339.6809627*a[7]*b[5] + 444.6732602*a[7]*b[6] + 562.0175927*a[7]*b[7] + 49.40814002*a[8]*b[1] + 111.1683151*a[8]*b[2] + 185.2805251*a[8]*b[3] + 271.7447701*a[8]*b[4] + 370.5610502*a[8]*b[5] + 481.7293652*a[8]*b[6] + 605.2497153*a[8]*b[7] + 55.58415753*a[9]*b[1] + 123.5203501*a[9]*b[2] + 203.8085776*a[9]*b[3] + 296.4488401*a[9]*b[4] + 401.4411377*a[9]*b[5] + 518.7854703*a[9]*b[6] + 648.4818378*a[9]*b[7] = 0:
eq[25] := 25.43290582*b[4] + 12.35203501*a[2]*b[1] + 24.70407002*a[1]*b[2] + 37.05610502*a[0]*b[3] + 504.8659114*a[4] + d[2] = 0:
eq[26] := 10.0*d[5] + 15.0*d[6] + 21.0*d[7] + 3.0*d[3] + 6.0*d[4] + d[2] + 890.1517036*b[7] + 127.1645291*b[5] + 381.4935873*b[6] + 25.43290582*b[4] + 63613.10484*a[9] + 7572.988671*a[6] + 17670.30690*a[7] + 35340.61380*a[8] + 504.8659114*a[4] + 2524.329556*a[5] + 37.05610502*a[0]*b[3] + 148.2244201*a[0]*b[4] + 370.5610502*a[0]*b[5] + 741.1221004*a[0]*b[6] + 1296.963676*a[0]*b[7] + 24.70407002*a[1]*b[2] + 111.1683151*a[1]*b[3] + 296.4488402*a[1]*b[4] + 617.6017504*a[1]*b[5] + 1111.683151*a[1]*b[6] + 1815.749146*a[1]*b[7] + 12.35203501*a[2]*b[1] + 74.11221005*a[2]*b[2] + 222.3366301*a[2]*b[3] + 494.0814003*a[2]*b[4] + 926.4026256*a[2]*b[5] + 1556.356411*a[2]*b[6] + 2420.998862*a[2]*b[7] + 37.05610502*a[3]*b[1] + 148.2244201*a[3]*b[2] + 370.5610503*a[3]*b[3] + 741.1221006*a[3]*b[4] + 1296.963676*a[3]*b[5] + 2075.141881*a[3]*b[6] + 3112.712822*a[3]*b[7] + 74.11221004*a[4]*b[1] + 247.0407002*a[4]*b[2] + 555.8415753*a[4]*b[3] + 1037.570941*a[4]*b[4] + 1729.284901*a[4]*b[5] + 2668.039561*a[4]*b[6] + 3890.891028*a[4]*b[7] + 123.5203501*a[5]*b[1] + 370.5610502*a[5]*b[2] + 778.1782055*a[5]*b[3] + 1383.427921*a[5]*b[4] + 2223.366301*a[5]*b[5] + 3335.049452*a[5]*b[6] + 4755.533478*a[5]*b[7] + 185.2805251*a[6]*b[1] + 518.7854703*a[6]*b[2] + 1037.570941*a[6]*b[3] + 1778.693041*a[6]*b[4] + 2779.207876*a[6]*b[5] + 4076.171553*a[6]*b[6] + 5706.640175*a[6]*b[7] + 259.3927351*a[7]*b[1] + 691.7139604*a[7]*b[2] + 1334.019781*a[7]*b[3] + 2223.366302*a[7]*b[4] + 3396.809627*a[7]*b[5] + 4891.405863*a[7]*b[6] + 6744.211115*a[7]*b[7] + 345.8569802*a[8]*b[1] + 889.3465205*a[8]*b[2] + 1667.524727*a[8]*b[3] + 2717.447702*a[8]*b[4] + 4076.171553*a[8]*b[5] + 5780.752383*a[8]*b[6] + 7868.246300*a[8]*b[7] + 444.6732602*a[9]*b[1] + 1111.683151*a[9]*b[2] + 2038.085777*a[9]*b[3] + 3260.937242*a[9]*b[4] + 4817.293653*a[9]*b[5] + 6744.211114*a[9]*b[6] + 9078.745732*a[9]*b[7] = 0:

solve([seq(eq[i], i = 1 .. 26)],{seq(a[i], i = 0 .. 9),seq(b[i], i = 0 .. 7),seq(d[i], i = 0 .. 7)});

Thanks a lot.

## Error in numeric dsolve...

Maple

Hello,

I want to solve three coupled differential equations with initial and boundary conditions numerically and get the plots of solutions.

Could you please help me to solve the error and get all three plots that I need?

My codes:

restart;

sys := {diff(phi(eta), eta\$2) + 5.261282735*f(eta)*diff(phi(eta), eta) - 2.630641368*phi(eta) = 0, 1.059704409*diff(theta(eta), eta\$2) + 6.176017503*f(eta)*diff(theta(eta), eta) + 21.03607964*diff(f(eta), eta\$2) + 0.5*phi(eta) = 0, diff(f(eta), eta\$4) - 1.052256547*diff(f(eta), eta)*diff(f(eta), eta\$2) + 1.052256547*f(eta)*diff(f(eta), eta\$3) + 5.165076420*diff(theta(eta), eta) + 5.261282735*diff(phi(eta), eta) = 0, eval(diff(phi(eta), eta), {eta = 0}) = 1 + 0.5*eval(diff(f(eta), eta\$2), {eta = 0}), eval(diff(phi(eta), eta), {eta = 1}) = 0.5*eval(diff(f(eta), eta\$2), {eta = 1}), f(0) = -0.5, f(1) = 0.5, phi(0) = 1, phi(1) = 0, theta(0) = 1, theta(1) = 0};

dsol:=dsolve(sys,numeric);
Error, (in dsolve/numeric/bvp/convertsys) unable to convert to an explicit first-order system
plots[odeplot]((dsol),eta=0..1);
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

Thank you.

## converting to spherical Bessel...

Maple

Hi,

I want to convert BesselJ(n,x) to the spherical version of it.

Is there a defined command in Maple that does this??

For example:

sqrt(Pi)*sqrt(2)*BesselJ(1/2, x)/(2*sqrt(x))

is equivallent to

sin(x)/x

Indeed, the latter is the spherical version of the former one.

However, I can define a function that does it, see:

SBesselJ := proc (n,x) options operator, arrow, function_assign; expand(simplify(sqrt(Pi/(2*x))*BesselJ(n+1/2, x),'assume = positive')) end proc;

but is there a command that converts some terms to our defined function??

## highest linear and non-llinear terms ...

Maple

Hi,

I want to extract the highest linear and non-linear terms in an equation without their coefficients

How I can do it?

For example in the following equation, the highest linear and nonlinear without coefficients are diff(u(T),T\$3) and u(T)*diff(u(T),T), respectively.

w*a*diff(u(T),T)+a*u(T)*diff(u(T),T)-(b^2)*a*w*diff(u(T),T\$3)=0

## parametric degree...

Maple

Hi,

How we can find the degree of the equation in which its powers are parametric?

For example, let

H := x^k+x^(2*k);

where k is a positive number.

Now, the degree must be 2*k, but when I use "frontend" I receive "one" !!!!

See:

assume(k>0);

frontend(degree,[H,x^k],[{`+`, `*`,`^`}]);

1