Madhukesh J K

120 Reputation

4 Badges

2 years, 205 days

MaplePrimes Activity


These are questions asked by Madhukesh J K

How to obtain the multiple solution and graph given in the paper. 

Stefan Blowing and Slip Effects on Unsteady Nanofluid Transport Past a Shrinking Sheet: Multiple Solutions

https://doi.org/10.1002/htj.21470

 

Can anyone help to get solutions.

Equations

 

ODES := (diff(f(eta), `$`(eta, 4)))/((1-phi1)^2.5*(1-phi2)^2.5*((1-phi2)*(1-phi1+phi1*rhos1/rhosf)+phi2*rhos2/rhosf))+S*(f(eta)*(diff(f(eta), `$`(eta, 3)))-3*(diff(f(eta), `$`(eta, 2)))-eta*(diff(f(eta), `$`(eta, 3)))-(diff(f(eta), eta))*(diff(f(eta), `$`(eta, 2)))) = 0,

(khnf/kf+(4/3)*R)*(diff(theta(eta), `$`(eta, 2)))/((1-phi2)*(1-phi1+phi1*rhos1*cp1/(rhosf*cpf))+phi2*rhos2*cp2/(rhosf*cpf))+S*Pr*(f(eta)*(diff(theta(eta), eta))-eta*(diff(theta(eta), eta))-gamma*(eta^2*(diff(theta(eta), `$`(eta, 2)))-2*eta*f(eta)*(diff(theta(eta), `$`(eta, 2)))-eta*(diff(f(eta), eta))*(diff(theta(eta), eta))+f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta))+f(eta)^2*(diff(theta(eta), `$`(eta, 2))))) = 0

Boundary Conditions

 f(0) = 0, ((D^2)(f))(0) = 0, (D(theta))(0) = 0, f(1) = 0, (D(f))(1) = 0, theta(1) = 1

 

phi1 = .1, phi2 = .1, rhos1 = 2720, rhos2 = 2810, rhosf = 997.1, khnf = 1.083061737, kf = .613, cp1 = 893, cp2 = 960, cpf = 4179, Pr = 6.2, knf = .8154646474., S=0.5,R=0.5, gamma=0.5

I am tried to solve it showing following error

Error, (in dsolve/numeric/bvp) matrix is singular

 

eq1 := diff(f(eta), eta, eta, eta, eta)+(2*f(eta)*(diff(f(eta), eta, eta, eta))+2*g(eta)*(diff(g(eta), eta)))*(1-phi)^2.5*(1-phi+phi*rhos/rhof)-sigmanf*M*(diff(f(eta), eta, eta))*(1-phi)^2.5/sigmaf = 0

eq2 := diff(g(eta), eta, eta)-(1-phi)^2.5*(1-phi+phi*rhos/rhof)*(2*(diff(f(eta), eta))*g(eta)-2*(diff(g(eta), eta))*f(eta))-sigmanf*M*g(eta)*(1-phi)^2.5/sigmaf = 0

eq3 := k[nf]*(diff(theta(eta), eta, eta))/(Pr*k[f])+((1-phi+phi*rhos*cps/(rhof*cpf))*2)*f(eta)*(diff(theta(eta), eta))-4*lambda*(1-phi+phi*rhos*cps/(rhof*cpf))*(f(eta)^2*(diff(theta(eta), eta, eta))+f(eta)*(diff(f(eta), eta))*(diff(theta(eta), eta)))+sigmanf*M*Ec*((diff(f(eta), eta))^2+g(eta)^2)/sigmaf = 0

eq4 := (1-phi)^2.5*(diff(chi(eta), `$`(eta, 2)))+2*Sc*f(eta)*(diff(chi(eta), eta))-sigma*Sc*(1+delta*theta(eta))^n*exp(-E/(1+delta*theta(eta)))*chi(eta) = 0

Boundary Conditions

f(0) = 0, (D(f))(0) = A1+gamma1*((D@@2)(f))(0), f(10) = 0, (D(f))(10) = 0, g(0) = 1+gamma2*(D(g))(0), g(10) = 0, theta(0) = 1+gamma3*(D(theta))(0), theta(10) = 0, chi(0) = 1, chi(10) = 0

Parameters

lambda = 0.1e-1, sigma = .1, Ec = .2, E = .1, M = 5, delta = .1, n = .1, Sc = 3, A1 = .5, gamma1 = .5, gamma2 = .5, gamma3 = .5, Pr = 6.2, phi = 0.1e-1, rhos = 5.06*10^3, rhof = 997, cps = 397.21, cpf = 4179, k[nf] = .6358521729, k[f] = .613, sigmanf = 0.5654049962e-5, sigmaf = 5.5*10^(-6)

 

 

I am tried to solve the following problem. here is the code and boundary conditions as well as parameters used in the problem. Please help me to get the numerical solution and getting plots between Cu and eta as well as D(f)(eta) vs eta.

restart;
Digits := trunc(evalhf(Digits));
                               15
ODEs := [diff(f(eta), `$`(eta, 3))+A^2+f(eta)*(diff(f(eta), `$`(eta, 2)))-(diff(f(eta), eta))^2+beta*((diff(g(eta), eta))^2-g(eta)*(diff(g(eta), `$`(eta, 2)))-1), lambda*(diff(g(eta), `$`(eta, 3)))+(diff(g(eta), `$`(eta, 2)))*f(eta)-g(eta)*(diff(f(eta), `$`(eta, 2)))];
`<,>`(ODEs[]);
           Vector[column](%id = 18446744073898822582)
LB, UB := 0, 1;
BCs := [`~`[`=`](([D(f), f, g, (D@@2)(g)])(LB), [1+B1*((D@@2)(f))(0), 0, 0, 0])[], `~`[`=`](([D(f), D(g)])(UB), [A, 0])[]];
     [D(f)(0) = 1 + B1 @@(D, 2)(f)(0), f(0) = 0, g(0) = 0, 

       @@(D, 2)(g)(0) = 0, D(f)(1) = A, D(g)(1) = 0]
Params := Record(A = .9, B1 = .5, beta = .5, lambda = .5);
NBVs := [-((D@@2)(f))(1) = `C*__f`];
Cf := `C*__f`;
Solve := module () local nbvs_rhs, Sol, ModuleApply, AccumData, ModuleLoad; export SavedData, Pos, Init;  nbvs_rhs := `~`[rhs](:-NBVs); ModuleApply := subs(_Sys = {:-BCs[], :-NBVs[], :-ODEs[]}, proc ({ A::realcons := Params:-A, B1::realcons := Params:-B1, beta::realcons := Params:-beta, lambda::realcons := Params:-lambda }) Sol := dsolve(_Sys, _rest, numeric); AccumData(Sol, {_options}); Sol end proc); AccumData := proc (Sol::{Matrix, procedure, list({name, function} = procedure)}, params::(set(name = realcons))) local n, nbvs; if Sol::Matrix then nbvs := seq(n = Sol[2, 1][1, Pos(n)], n = nbvs_rhs) else nbvs := `~`[`=`](nbvs_rhs, eval(nbvs_rhs, Sol(:-LB)))[] end if; SavedData[params] := Record[packed](params[], nbvs) end proc; ModuleLoad := eval(Init); Init := proc () Pos := proc (n::name) local p; option remember; member(n, Sol[1, 1], 'p'); p end proc; SavedData := table(); return  end proc; ModuleLoad() end module;
colseq := [red, green, blue, brown];
Pc := B1 = .5, A = .1, beta = .5;
Ps := [B1 = .5, A = .1, beta = .5];
Pv := [lambda = [.5, 1, 1.5, 2]];
for i to nops(Ps) do plots:-display([seq(plots:-odeplot(Solve(lhs(Pv[i]) = rhs(Pv[i])[j], Ps[i][], Pc), [eta, theta(eta)], 'color' = colseq[j], 'legend' = [lhs(Pv[i]) = rhs(Pv[i])[j]]), j = 1 .. nops(rhs(Pv[i])))], 'axes' = 'boxed', 'gridlines' = false, 'labelfont' = ['TIMES', 'BOLDOBLIQUE', 16], 'caption' = nprintf(cat(`$`("\n%a = %4.2f, ", nops(Ps[i])-1), "%a = %4.2f\n\n"), `~`[lhs, rhs](Ps[i])[]), 'captionfont' = ['TIMES', 16]) end do;
Error, (in dsolve/numeric/process_input) invalid argument: (B1 = .5)[]

 

 

Please help me to get the graph of CU v/s eta also D(f)(eta) vs eta
 

1 2 3 4 5 Page 5 of 5