1521 Reputation

8 years, 346 days

Workaround....

Or workaround:

restart;
T__ln := (1/2)*m__ws*v__l+(1/2)*I__ws*(diff(varphi__l(t), t))^2+((1/2*(m__zs+m__zp+m__wp))*v__l+(1/2*(I__zs+I__zp+I__wp))*(diff(varphi__l(t), t))^2)*z__11*eta/z__12+((1/2*(m__wk+m__zpk+m__k+m__zk))*v__l+(1/2*(I__wk+I__zpk+I__k+I__zk))*(diff(varphi__l(t), t))^2)*z__21*eta/z__22;
eval(diff(eval(T__ln, diff(varphi__l(t), t) = x), x), x = diff(varphi__l(t), t));

Try this:N := 10;(MultiSeries:-series(si...

With package: MultiSeries Maple can:

N := 10;
(MultiSeries:-series(sin(x)^a, x = 0, N) assuming (0 < a));

#x^a - a*x^(2 + a)/6 + (-1/180*a + 1/72*a^2)*x^(4 + a) + (-1/2835*a + 1/1080*a^2 - 1/1296*a^3)*x^(6 + a) + (-1/37800*a + 101/1360800*a^2 - 1/12960*a^3 + 1/31104*a^4)*x^(8 + a) + O(x^(10 + a))

Another simpler way to compute this...

Another simpler way to compute this integral:

 >
 >
 (1)
 >

 (2)

 (3)

 (4)

 (5)

A good question why inttrans does n...

A good question why inttrans does not work in this case? I don't know.

A trick:

inttrans:-fourier(- diff(erf(x), x)*I/k, x, k);

# -2*I*exp(-k^2/4)/k # A correct answer.

int(erf(x)*exp(-I*x*k),x=-infinity..infinity);

# -2*I*exp(-k^2/4)/k !

evalf[10]...

evalf[10](Int(exp(-x)*sin(x^2/2)/(3 + x), x = 1 .. infinity));

#0.04279639331

Or:

Digits := 10:

int(exp(-x)*sin(x^2/2)/(3 + x), x = 1 .. infinity, numeric);

#0.04279639331

Execute: ?Digits ,to see more information.

with Maple 2019.2 :

int(1/(c*x + d), x = a .. b) assuming a < b;

#piecewise(And(a < -d/c, -d/c < b), undefined, (-ln(a*c + d) + ln(b*c + d))/c)

closed form ?...

Do you have any reason to think there is a closed form? Most nonlinear ODE's don't have one.

With numerics,see attached file:

BVP method only work....

You have a BVP type ODE ,RK methods dosen't work(in Maple) for yours ICS and BC.

 >
 >
 (1)
 >
 (2)
 >
 (3)
 >
 (4)
 >
 >

Try this: >&nbs...

After eliminating  syntax errors:

 >
 >
 (1)
 >
 >
 (2)
 >
 (3)
 >
 (4)
 >
 (5)
 >
 (6)
 >
 >

Try this:...

Try this:

 >
 >
 (1)
 >
 (2)
 >
 (3)
 >
 (4)
 >
 (5)
 >
 >
 >
 (6)
 >
 (7)
 >
 > derivative
 >
 >

 >
 >
 (1)
 >
 (2)
 >
 >
 (3)
 >
 (4)
 >
 (5)
 >
 (6)
 >
 (7)
 >
 (8)
 >
 (9)
 >
 (10)
 >
 (11)
 >

useint......

Command useint in dsolve helps:

 >
 >
 (1)
 >
 (2)
 >
 (3)
 >
 (4)
 >

Another workround:...

simplify(int(sin(y)^(1/3)*cos(y)^3, y = 0 .. x, AllSolutions));

#piecewise(sin(x) < 0, FAIL, 0 <= sin(x), -3*(2*sin(x)^2 - 5)*sin(x)^(4/3)/20)

Pity......

Yes, Maple can't  handle elliptic PDEs,because last Updates(Enhanced) to solving PDE's equation was in Maple 9 in year 2003.

During this time  no improvements have been made.

What a pity.

pdsolve can solve......

pdsolve can solve,on Maple 2019.1 with Physics:-Version(399):

PDE := diff(u(x, t), t) + 2*u(x, t)^2*diff(u(x, t), x) - diff(u(x, t), x)^2 - 1/2*diff(u(x, t), x \$ 2)*u(x, t) = 0;

pdsolve([PDE, u(x, 0) = -tanh(x)]);

#u(x, t) = tanh(t - x)

 5 6 7 8 9 10 11 Last Page 7 of 20
﻿