## 15 Reputation

1 years, 259 days

## LAST QUESTION!...

@Carl Love Again thank you :)

I have what should be LAST question !

Say in this: FRAM3.mw, where A = [0,0,0,0,0,0,0,0,0,0,0,0], a simple example.

I have newNSR, resNSR := [39624288*Q^9 + 22722480*Q^8 + 12198720*Q^7 + 5937360*Q^6 + 2581152*Q^5 + 947896*Q^4 + 268224*Q^3 + 50448*Q^2 + 3808*Q + 24, 836*Q^9 + 594*Q^8 - 648*Q^7 - 418*Q^6 + 540*Q^5 - 99*Q^4 - 88*Q^3 + 54*Q^2 - 12*Q + 1], P -> subs(Q = q^(1/d), subsindets(P, identical(Q)^posint, p -> q^(op(2, p)/d))).

Before the change,

NSR := 39624288*q^9 + 22722480*q^8 + 12198720*q^7 + 5937360*q^6 + 2581152*q^5 + 947896*q^4 + 268224*q^3 + 50448*q^2 + 3808*q + 24

and

delta := 836*q^9 + 594*q^8 - 648*q^7 - 418*q^6 + 540*q^5 - 99*q^4 - 88*q^3 + 54*q^2 - 12*q + 1

If I was to perform long division by hand on this, I'd get 24 as my 0th coefficient in the quotient. Why am I getting 900552/19? Is there a way to take these quotient similarly as long division?

Let me know if the question makes sense---

Thank you!

## Thank you but......

@Carl Love You're a life saver thank you !

Just another tiny problem. I've attached the same code with a case where FractionalExponentAdjuster returns a polynomial with a Q^{-1}. Then, the call quo(new[],Q,'r') isn't working: Error, (in quo) arguments must be polynomial in Q. I've noticed that taking out that negative exponent term makes it work just fine.

Is there a way to make it so that FractionalExponentAdjuster returns polynomial with only positive powers?

FrameShape.mw

Thanks again. Sorry if it's an "easy" question. I'm new at maple!

## @Ronan  It's long ! The #e...

@Ronan
It's long ! The #ed A's are other values for which i need that final divison to be simplified.

 >
 >
 >
 >
 >
 >
 (1)
 >
 (2)
 >
 (3)
 >
 (4)
 >
 >
 >
 >
 (5)
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >
 >