Michael_Watson

125 Reputation

3 Badges

15 years, 290 days

MaplePrimes Activity


These are questions asked by Michael_Watson

I am trying to expand out the terms  of equation 13.  The expand command causes the lhs to be zero?


Initialize the metric and tetrad

 

restart; with(Physics); with(Tetrads); with(PDETools)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1.1)

X = [zetabar, zeta, v, u]

X = [zetabar, zeta, v, u]

(1.2)

ds2 := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(zetabar, zeta, v, u)), (du+Physics:-`*`(Ybar(zetabar, zeta, v, u), dzeta)+Physics:-`*`(Y(zetabar, zeta, v, u), dzetabar)-Physics:-`*`(Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), dv))^2)

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(1.3)

declare(ds2)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(1.4)

NULL

vierbien = Matrix([[1, 0, -Ybar(zetabar, zeta, v, u), 0], [0, 1, -Y(zetabar, zeta, v, u), 0], [Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Physics:-`*`(H(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1-Physics:-`*`(Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Ybar(zetabar, zeta, v, u)), H(zetabar, zeta, v, u)], [Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u), -Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1]])

vierbien = (Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(zetabar, Zeta, v, u), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(zetabar, Zeta, v, u), (2, 4) = 0, (3, 1) = H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u), (3, 2) = H(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 3) = 1-H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 4) = H(zetabar, Zeta, v, u), (4, 1) = Y(zetabar, Zeta, v, u), (4, 2) = Ybar(zetabar, Zeta, v, u), (4, 3) = -Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (4, 4) = 1}))

(1.5)

``

NULL

Setup(tetrad = rhs(vierbien = Matrix(%id = 18446744078213056502)), metric = ds2, mathematicalnotation = true, automaticsimplification = true, coordinatesystems = (X = [zetabar, zeta, v, u]), signature = "+++-")

[automaticsimplification = true, coordinatesystems = {X}, mathematicalnotation = true, metric = {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}, signature = `+ + + -`, tetrad = {(1, 1) = 1, (1, 3) = -Ybar(X), (2, 2) = 1, (2, 3) = -Y(X), (3, 1) = H(X)*Y(X), (3, 2) = H(X)*Ybar(X), (3, 3) = 1-H(X)*Y(X)*Ybar(X), (3, 4) = H(X), (4, 1) = Y(X), (4, 2) = Ybar(X), (4, 3) = -Y(X)*Ybar(X), (4, 4) = 1}]

(1.6)

gamma_[4, 1, 1] = 0

diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0

(1)

gamma_[4, 2, 2] = 0

diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0

(2)

gamma_[1, 4, 4] = 0

(diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0

(3)

gamma_[2, 4, 4] = 0

(diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0

(4)

gamma_[3, 4, 4] = 0

0 = 0

(5)

gamma_[4, 4, 4] = 0

0 = 0

(6)

shearconditions := {diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0, diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0, (diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0, (diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0}:

 

 

RicciT := proc (a, b) options operator, arrow; SumOverRepeatedIndices(Ricci[mu, nu]*e_[a, `~mu`]*e_[b, `~nu`]) end proc

proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Physics:-Ricci[mu, nu], Physics:-Tetrads:-e_[a, `~mu`]), Physics:-Tetrads:-e_[b, `~nu`])) end proc

(7)

SlashD := proc (f, a) options operator, arrow; SumOverRepeatedIndices(D_[b](f)*e_[a, `~b`]) end proc

proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-D_[b](f), Physics:-Tetrads:-e_[a, `~b`])) end proc

(8)

SlashD(f(X), 1)

diff(f(X), zeta)-Ybar(X)*(diff(f(X), u))

(9)

SlashD(f(X), 2)

diff(f(X), zetabar)-Y(X)*(diff(f(X), u))

(10)

SlashD(f(X), 3)

(1+H(X)*Y(X)*Ybar(X))*(diff(f(X), u))-H(X)*((diff(f(X), zeta))*Y(X)+Ybar(X)*(diff(f(X), zetabar))+diff(f(X), v))

(11)

SlashD(f(X), 4)

-Y(X)*Ybar(X)*(diff(f(X), u))+Ybar(X)*(diff(f(X), zetabar))+(diff(f(X), zeta))*Y(X)+diff(f(X), v)

(12)

NULL

  simplify(RicciT(1, 2), shearconditions) = 0

H(X)*(diff(diff(Y(X), zeta), zetabar))*Ybar(X)-H(X)*Ybar(X)*Y(X)*(diff(diff(Ybar(X), u), zetabar))-H(X)*Ybar(X)^2*(diff(diff(Y(X), u), zetabar))-H(X)*Y(X)^2*(diff(diff(Ybar(X), u), zeta))-2*H(X)*Y(X)*Ybar(X)*(diff(diff(Y(X), u), zeta))+H(X)*Y(X)^2*Ybar(X)*(diff(diff(Ybar(X), u), u))-H(X)*Y(X)*(diff(diff(Ybar(X), u), v))+H(X)*Y(X)*Ybar(X)^2*(diff(diff(Y(X), u), u))-H(X)*(diff(diff(Y(X), u), v))*Ybar(X)+H(X)*(diff(Ybar(X), zetabar))^2+(-3*H(X)*Y(X)*(diff(Ybar(X), u))-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), zetabar))+H(X)*(diff(Y(X), zeta))^2+(-4*H(X)*(diff(Y(X), u))*Ybar(X)-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Y(X), zeta))+2*H(X)*Y(X)^2*(diff(Ybar(X), u))^2-Y(X)*(-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), u))+2*(diff(Y(X), u))*Ybar(X)*(H(X)*(diff(Y(X), u))*Ybar(X)+(1/2)*(diff(H(X), u))*Y(X)*Ybar(X)-(1/2)*(diff(H(X), zeta))*Y(X)-(1/2)*(diff(H(X), zetabar))*Ybar(X)-(1/2)*(diff(H(X), v))) = 0

(13)

``

0 = 0

0 = 0

(14)

``

Why does the expand command cause the lhs to be zero?

NULL


Download Question_R12.mw

 

restart

with(ODETools):

eqn1 := ((diff(f4(r), r))*r-f4(r)*f1(r)+f4(r))/(f4(r)*r^2) = 0

((diff(f4(r), r))*r-f4(r)*f1(r)+f4(r))/(f4(r)*r^2) = 0

(1)

eqn4 := f4(r)*(r*(diff(f1(r), r))+f1(r)^2-f1(r))/(f1(r)^2*r^2) = 2*m*Dirac(r)*f4(r)/r^2

f4(r)*(r*(diff(f1(r), r))+f1(r)^2-f1(r))/(f1(r)^2*r^2) = 2*m*Dirac(r)*f4(r)/r^2

(2)

dsolve({eqn1, eqn4})

[{-(2*Dirac(r)*(diff(f4(r), r))^2*m*r^2+4*Dirac(r)*(diff(f4(r), r))*f4(r)*m*r+2*Dirac(r)*f4(r)^2*m-f4(r)*(diff(diff(f4(r), r), r))*r^2-2*(diff(f4(r), r))*r*f4(r))/f4(r) = 0}, {f1(r) = ((diff(f4(r), r))*r+f4(r))/f4(r)}]

(3)

``

When I try to solve this system of ODE, Maple does not factor out f4(r) in eqn4.  How do I get Maple to solve eqn4? So that I can get the correct result for f1(r) below:

 

dsolve((r*(diff(f1(r), r))+f1(r)^2-f1(r))/(f1(r)^2*r^2) = 2*m*Dirac(r)/r^2)

f1(r) = -r/(2*m*Heaviside(r)-_C1-r)

(4)

``

Thanks.

Download dsolve_question.mw

I am trying to simplify equation 18 using equations 8 and 9. It should look a little like equation 21, but instead I get the results in equations 19 and 20.  I tried using different substituions, but algsubs gets the closest answer. A few terms are going to zero after the substitution.

When I substitute Z(X) then Zbar(X) terms vanish, and visa versa.


Initialize the metric and tetrad

 

restart; with(Physics); with(Tetrads)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1.1)

X = [zetabar, zeta, v, u]

X = [zetabar, zeta, v, u]

(1.2)

ds2 := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(zetabar, zeta, v, u)), (du+Physics:-`*`(Ybar(zetabar, zeta, v, u), dzeta)+Physics:-`*`(Y(zetabar, zeta, v, u), dzetabar)-Physics:-`*`(Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), dv))^2)

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(1.3)

PDEtools:-declare(ds2)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(1.4)

NULL

vierbien = Matrix([[1, 0, -Ybar(zetabar, zeta, v, u), 0], [0, 1, -Y(zetabar, zeta, v, u), 0], [Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Physics:-`*`(H(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1-Physics:-`*`(Physics:-`*`(H(zetabar, zeta, v, u), Y(zetabar, zeta, v, u)), Ybar(zetabar, zeta, v, u)), H(zetabar, zeta, v, u)], [Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u), -Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), 1]])

vierbien = (Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(zetabar, Zeta, v, u), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(zetabar, Zeta, v, u), (2, 4) = 0, (3, 1) = H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u), (3, 2) = H(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 3) = 1-H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 4) = H(zetabar, Zeta, v, u), (4, 1) = Y(zetabar, Zeta, v, u), (4, 2) = Ybar(zetabar, Zeta, v, u), (4, 3) = -Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (4, 4) = 1}))

(1.5)

``

NULL

Setup(tetrad = rhs(vierbien = Matrix(%id = 18446744078408794830)), metric = ds2, mathematicalnotation = true, automaticsimplification = true, coordinatesystems = (X = [zetabar, zeta, v, u]), signature = "+++-")

[automaticsimplification = true, coordinatesystems = {X}, mathematicalnotation = true, metric = {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}, signature = `+ + + -`, tetrad = {(1, 1) = 1, (1, 3) = -Ybar(X), (2, 2) = 1, (2, 3) = -Y(X), (3, 1) = H(X)*Y(X), (3, 2) = H(X)*Ybar(X), (3, 3) = 1-H(X)*Y(X)*Ybar(X), (3, 4) = H(X), (4, 1) = Y(X), (4, 2) = Ybar(X), (4, 3) = -Y(X)*Ybar(X), (4, 4) = 1}]

(1.6)

``

Verification of Tetrad

 

I will try to verify the tetrad from (Kerr and Schild (1965)). However, the tetrad given in the paper seems to have the third tetrad with the wrong sign. I changed the sign and get the correct verification,

    e_[]

`𝔢`[a, mu] = (Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(X), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(X), (2, 4) = 0, (3, 1) = H(X)*Y(X), (3, 2) = H(X)*Ybar(X), (3, 3) = 1-H(X)*Y(X)*Ybar(X), (3, 4) = H(X), (4, 1) = Y(X), (4, 2) = Ybar(X), (4, 3) = -Y(X)*Ybar(X), (4, 4) = 1}))

(2.1)

g_[]

g[mu, nu] = (Matrix(4, 4, {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 1) = 1+2*H(X)*Y(X)*Ybar(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 1) = -2*H(X)*Y(X)^2*Ybar(X), (3, 2) = -2*H(X)*Ybar(X)^2*Y(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 1) = 2*H(X)*Y(X), (4, 2) = 2*H(X)*Ybar(X), (4, 3) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}))

(2.2)

Physics:-`*`(e_[a, mu], e_[a, nu]) = g_[mu, nu]

Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[`~a`, nu] = Physics:-g_[mu, nu]

(2.3)

TensorArray(Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[`~a`, nu] = Physics:-g_[mu, nu])

Matrix(4, 4, {(1, 1) = 2*H(X)*Y(X)^2 = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X) = 2*H(X)*Y(X), (2, 1) = 1+2*H(X)*Y(X)*Ybar(X) = 1+2*H(X)*Y(X)*Ybar(X), (2, 2) = 2*H(X)*Ybar(X)^2 = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X) = 2*H(X)*Ybar(X), (3, 1) = -2*H(X)*Y(X)^2*Ybar(X) = -2*H(X)*Y(X)^2*Ybar(X), (3, 2) = -2*H(X)*Ybar(X)^2*Y(X) = -2*H(X)*Ybar(X)^2*Y(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2 = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X) = 1-2*H(X)*Y(X)*Ybar(X), (4, 1) = 2*H(X)*Y(X) = 2*H(X)*Y(X), (4, 2) = 2*H(X)*Ybar(X) = 2*H(X)*Ybar(X), (4, 3) = 1-2*H(X)*Y(X)*Ybar(X) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X) = 2*H(X)})

(2.4)

Physics:-`*`(e_[a, mu], e_[b, mu]) = eta_[a, b]

Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[b, `~mu`] = Physics:-Tetrads:-eta_[a, b]

(2.5)

NULL

TensorArray(Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[b, `~mu`] = Physics:-Tetrads:-eta_[a, b])

Matrix(4, 4, {(1, 1) = 0 = 0, (1, 2) = 1 = 1, (1, 3) = 0 = 0, (1, 4) = 0 = 0, (2, 1) = 1 = 1, (2, 2) = 0 = 0, (2, 3) = 0 = 0, (2, 4) = 0 = 0, (3, 1) = 0 = 0, (3, 2) = 0 = 0, (3, 3) = 0 = 0, (3, 4) = 1 = 1, (4, 1) = 0 = 0, (4, 2) = 0 = 0, (4, 3) = 1 = 1, (4, 4) = 0 = 0})

(2.6)

``

gamma_[4, 2, 1]

diff(Y(X), zeta)-(diff(Y(X), u))*Ybar(X)

(2.7)

SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(D_[nu](e_[4, mu]), e_[2, mu]), e_[1, `~nu`]))

diff(Y(X), zeta)-(diff(Y(X), u))*Ybar(X)

(2.8)

NULL

``

For equation 2.8 we get the following:

SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Riemann[`~sigma`, rho, mu, nu], e_[4, `~rho`]), e_[4, `~nu`]))

(-Physics:-Riemann[`~sigma`, 4, 4, mu]*Y(X)^2+(Physics:-Riemann[`~sigma`, 4, 1, mu]+Physics:-Riemann[`~sigma`, 1, 4, mu])*Y(X)-Physics:-Riemann[`~sigma`, 1, 1, mu])*Ybar(X)^2+((Physics:-Riemann[`~sigma`, 2, 4, mu]+Physics:-Riemann[`~sigma`, 4, 2, mu])*Y(X)^2+(-Physics:-Riemann[`~sigma`, 2, 1, mu]+Physics:-Riemann[`~sigma`, 3, 4, mu]+Physics:-Riemann[`~sigma`, 4, 3, mu]-Physics:-Riemann[`~sigma`, 1, 2, mu])*Y(X)-Physics:-Riemann[`~sigma`, 3, 1, mu]-Physics:-Riemann[`~sigma`, 1, 3, mu])*Ybar(X)-Physics:-Riemann[`~sigma`, 2, 2, mu]*Y(X)^2+(-Physics:-Riemann[`~sigma`, 2, 3, mu]-Physics:-Riemann[`~sigma`, 3, 2, mu])*Y(X)-Physics:-Riemann[`~sigma`, 3, 3, mu]

(1)

 

Now we replicate eqn 2.16. These are the conditions for e[4,mu] to be geodesic and shear-free. The outputs are eqn 3.5.

 

gamma_[4, 1, 1] = 0

diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0

(2)

gamma_[4, 2, 2] = 0

diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0

(3)

gamma_[1, 4, 4] = 0

(diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0

(4)

gamma_[2, 4, 4] = 0

(diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0

(5)

gamma_[3, 4, 4] = 0

0 = 0

(6)

gamma_[4, 4, 4] = 0

0 = 0

(7)

shearconditions := {diff(Y(X), zetabar)-(diff(Y(X), u))*Y(X) = 0, diff(Ybar(X), zeta)-(diff(Ybar(X), u))*Ybar(X) = 0, (diff(Y(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Y(X), zeta))-(diff(Y(X), zetabar))*Ybar(X)-(diff(Y(X), v)) = 0, (diff(Ybar(X), u))*Y(X)*Ybar(X)-Y(X)*(diff(Ybar(X), zeta))-Ybar(X)*(diff(Ybar(X), zetabar))-(diff(Ybar(X), v)) = 0}:

 

Now we can define the rotation coefficients associated with rotation and expansion z = theta - i omega

 

gamma_[2, 4, 1] = Z(X)

-(diff(Y(X), zeta))+(diff(Y(X), u))*Ybar(X) = Z(X)

(8)

gamma_[1, 4, 2] = Zbar(X)

-(diff(Ybar(X), zetabar))+(diff(Ybar(X), u))*Y(X) = Zbar(X)

(9)

PDEtools:-declare(Z(X), Zbar(X))

Zbar(zetabar, zeta, v, u)*`will now be displayed as`*Zbar

(10)

Zdefinitions := {-(diff(Y(X), zeta))+(diff(Y(X), u))*Ybar(X) = Z(X), -(diff(Ybar(X), zetabar))+(diff(Ybar(X), u))*Y(X) = Zbar(X)}

{-(diff(Y(X), zeta))+(diff(Y(X), u))*Ybar(X) = Z(X), -(diff(Ybar(X), zetabar))+(diff(Ybar(X), u))*Y(X) = Zbar(X)}

(11)

We now show that the tetrad vectors are propogated parallel along each curve of the congruence of null geodesics which have e[4,~mu] as tangents.

 

   

We now use the tetrad form of the Ricci tensor. In order to use this in Maple we need to create a Ricci Tensor Tetrad function.

 

RicciT := proc (a, b) options operator, arrow; SumOverRepeatedIndices(Ricci[mu, nu]*e_[a, `~mu`]*e_[b, `~nu`]) end proc

proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Physics:-Ricci[mu, nu], Physics:-Tetrads:-e_[a, `~mu`]), Physics:-Tetrads:-e_[b, `~nu`])) end proc

(12)

SlashD := proc (f, a) options operator, arrow; SumOverRepeatedIndices(D_[b](f)*e_[a, `~b`]) end proc

proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-D_[b](f), Physics:-Tetrads:-e_[a, `~b`])) end proc

(13)

SlashD(f(X), 1)

diff(f(X), zeta)-Ybar(X)*(diff(f(X), u))

(14)

SlashD(f(X), 2)

diff(f(X), zetabar)-Y(X)*(diff(f(X), u))

(15)

SlashD(f(X), 3)

(1+H(X)*Y(X)*Ybar(X))*(diff(f(X), u))-H(X)*((diff(f(X), zeta))*Y(X)+Ybar(X)*(diff(f(X), zetabar))+diff(f(X), v))

(16)

SlashD(f(X), 4)

-Y(X)*Ybar(X)*(diff(f(X), u))+(diff(f(X), zeta))*Y(X)+Ybar(X)*(diff(f(X), zetabar))+diff(f(X), v)

(17)

NULL

The geodesic and shear free condition given by Lemma 1 in (Goldberg and Sachs (1962)). Kerr uses the fourth tetrad instead of the third so we need to modify the Ricci tensor conditions. The equations (2) - (5) enforce the first Lemma.

 

   

 

Notice that none of the previous Ricci conditions can be used to solve for H.  We can use the remaining field equations to find the partial differential equations necessary to derive the metric.

 

  simplify(RicciT(1, 2), shearconditions) = 0

H(X)*(diff(diff(Y(X), zeta), zetabar))*Ybar(X)-H(X)*Ybar(X)*Y(X)*(diff(diff(Ybar(X), u), zetabar))-H(X)*Ybar(X)^2*(diff(diff(Y(X), u), zetabar))-H(X)*Y(X)^2*(diff(diff(Ybar(X), u), zeta))-2*H(X)*Y(X)*Ybar(X)*(diff(diff(Y(X), u), zeta))+H(X)*Y(X)^2*Ybar(X)*(diff(diff(Ybar(X), u), u))-H(X)*Y(X)*(diff(diff(Ybar(X), u), v))+H(X)*Y(X)*Ybar(X)^2*(diff(diff(Y(X), u), u))-H(X)*(diff(diff(Y(X), u), v))*Ybar(X)+H(X)*(diff(Ybar(X), zetabar))^2+(-3*H(X)*Y(X)*(diff(Ybar(X), u))-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), zetabar))+H(X)*(diff(Y(X), zeta))^2+(-4*H(X)*(diff(Y(X), u))*Ybar(X)-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Y(X), zeta))+2*H(X)*Y(X)^2*(diff(Ybar(X), u))^2-Y(X)*(-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), u))+2*(H(X)*(diff(Y(X), u))*Ybar(X)+(1/2)*(diff(H(X), u))*Y(X)*Ybar(X)-(1/2)*(diff(H(X), zeta))*Y(X)-(1/2)*(diff(H(X), zetabar))*Ybar(X)-(1/2)*(diff(H(X), v)))*(diff(Y(X), u))*Ybar(X) = 0

(18)

-(diff(H(X), zetabar))*Ybar(X)*Z(X)-Y(X)*(diff(H(X), zeta))*Z(X)-H(X)*(diff(Y(X), zeta))^2+Z(X)*((diff(H(X), u))*Y(X)*Ybar(X)+2*H(X)*Z(X)-(diff(H(X), v))) = 0

-(diff(H(X), zetabar))*Ybar(X)*Z(X)-(diff(H(X), zeta))*Y(X)*Z(X)-H(X)*(diff(Y(X), zeta))^2-Z(X)*(-(diff(H(X), u))*Y(X)*Ybar(X)-2*H(X)*Z(X)+diff(H(X), v)) = 0

(19)

Zbar(X)*(-(diff(H(X), v))-(diff(H(X), zetabar))*Ybar(X)-(diff(H(X), zeta))*Y(X)+(diff(H(X), u))*Y(X)*Ybar(X)+H(X)*(diff(Ybar(X), zetabar)+2*Zbar(X))) = 0

-Zbar(X)*(-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)-H(X)*(diff(Ybar(X), zetabar))-2*H(X)*Zbar(X)+diff(H(X), v)) = 0

(20)

Physics:-`*`(SlashD(H(X), 4), Z(X)+Zbar(X)) = Physics:-`*`(H(X), SlashD(Z(X), 4)+SlashD(Zbar(X), 4))

-(-(diff(H(X), v))-(diff(H(X), zeta))*Y(X)+Ybar(X)*((diff(H(X), u))*Y(X)-(diff(H(X), zetabar))))*(Z(X)+Zbar(X)) = H(X)*(-Y(X)*Ybar(X)*(diff(Z(X), u))+Ybar(X)*(diff(Z(X), zetabar))+Y(X)*(diff(Z(X), zeta))+diff(Z(X), v)-Y(X)*Ybar(X)*(diff(Zbar(X), u))+Ybar(X)*(diff(Zbar(X), zetabar))+Y(X)*(diff(Zbar(X), zeta))+diff(Zbar(X), v))

(21)

``

NULL

NULL


Download Deriving_the_Kerr_Metric.mw

Does anyone know how to incorporate the tetrad with the directional derivative? I tried using the SumOverIndices, but get crazy results. I know Maple can find the answer easily because I have done the same thing by hand. What am I missing?

The directional derivative should take the form f,1 = eaμ df/dxμ . The answer is Y,1 = dY/dζ – Ybar dY/du.  I obviously do not get this result.

 


restart; with(Physics); with(Tetrads)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1)

`#msup(mi("ds",mathcolor = "#af00af"),mn("2",mathcolor = "#af00af"))` := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(zetabar, zeta, v, u)), (du+Physics:-`*`(Ybar(zetabar, zeta, v, u), dzeta)+Physics:-`*`(Y(zetabar, zeta, v, u), dzetabar)-Physics:-`*`(Physics:-`*`(Y(zetabar, zeta, v, u), Ybar(zetabar, zeta, v, u)), dv))^2)

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(2)

X = [zetabar, zeta, v, u]

X = [zetabar, zeta, v, u]

(3)

PDEtools:-declare(`#msup(mi("ds",mathcolor = "#af00af"),mn("2",mathcolor = "#af00af"))`)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(4)

Setup(automaticsimplification = true, coordinatesystems = (X = [zetabar, zeta, v, u]), metric = 2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2)

[automaticsimplification = true, coordinatesystems = {X}, metric = {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}]

(5)

g_[]

g_[mu, nu] = (Matrix(4, 4, {(1, 1) = 2*H(X)*Y(X)^2, (1, 2) = 1+2*H(X)*Y(X)*Ybar(X), (1, 3) = -2*H(X)*Y(X)^2*Ybar(X), (1, 4) = 2*H(X)*Y(X), (2, 1) = 1+2*H(X)*Y(X)*Ybar(X), (2, 2) = 2*H(X)*Ybar(X)^2, (2, 3) = -2*H(X)*Ybar(X)^2*Y(X), (2, 4) = 2*H(X)*Ybar(X), (3, 1) = -2*H(X)*Y(X)^2*Ybar(X), (3, 2) = -2*H(X)*Ybar(X)^2*Y(X), (3, 3) = 2*H(X)*Y(X)^2*Ybar(X)^2, (3, 4) = 1-2*H(X)*Y(X)*Ybar(X), (4, 1) = 2*H(X)*Y(X), (4, 2) = 2*H(X)*Ybar(X), (4, 3) = 1-2*H(X)*Y(X)*Ybar(X), (4, 4) = 2*H(X)}))

(6)

``

NULL

NULL

eqn3 := SumOverRepeatedIndices(Physics:-`*`(d_[mu](Y(X)), e_[1, `~mu`]))

((Y(X)*Ybar(X)-1)*(diff(Y(X), zetabar))+(Y(X)*Ybar(X)-1)*(diff(Y(X), zeta))+(diff(Y(X), u)+diff(Y(X), v))*(Y(X)+Ybar(X)))*2^(1/2)/((-(Ybar(X)^2+1)*(Y(X)^2+1)/(Y(X)+Ybar(X))^2)^(1/2)*(2*Y(X)+2*Ybar(X)))

(7)

NULL

``

NULL


Download Directional_Derivative.mw

I am using the SumOverRepeatedIndices and get a Length of Output Exceeded error. Sometimes if I close the file and restart the program then I get a result and no error.  However, if I recalculate then I get the error.

 


restart; with(Physics); with(Tetrads)

[e_, eta_, gamma_, l_, lambda_, m_, mb_, n_]

(1)

`#msup(mi("ds",mathcolor = "#af00af"),mn("2",mathcolor = "#af00af"))` := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(zeta, zetabar, u, v)), (du+Physics:-`*`(Ybar(zeta, zetabar, u, v), dzeta)+Physics:-`*`(Y(zeta, zetabar, u, v), dzetabar)-Physics:-`*`(Physics:-`*`(Y(zeta, zetabar, u, v), Ybar(zeta, zetabar, u, v)), dv))^2)

2*dzeta*dzetabar+2*du*dv+2*H(zeta, zetabar, u, v)*(du+Ybar(zeta, zetabar, u, v)*dzeta+Y(zeta, zetabar, u, v)*dzetabar-Y(zeta, zetabar, u, v)*Ybar(zeta, zetabar, u, v)*dv)^2

(2)

X = [zeta, zetabar, u, v]

X = [zeta, zetabar, u, v]

(3)

PDEtools:-declare(`#msup(mi("ds",mathcolor = "#af00af"),mn("2",mathcolor = "#af00af"))`)

Ybar(zeta, zetabar, u, v)*`will now be displayed as`*Ybar

(4)

Setup(coordinates = (X = [zeta, zetabar, u, v]), metric = 2*dzeta*dzetabar+2*du*dv+2*H(zeta, zetabar, u, v)*(du+Ybar(zeta, zetabar, u, v)*dzeta+Y(zeta, zetabar, u, v)*dzetabar-Y(zeta, zetabar, u, v)*Ybar(zeta, zetabar, u, v)*dv)^2)

[coordinatesystems = {X}, metric = {(1, 1) = 2*H(X)*Ybar(X)^2, (1, 2) = 1+2*H(X)*Ybar(X)*Y(X), (1, 3) = 2*H(X)*Ybar(X), (1, 4) = -2*H(X)*Ybar(X)^2*Y(X), (2, 2) = 2*H(X)*Y(X)^2, (2, 3) = 2*H(X)*Y(X), (2, 4) = -2*H(X)*Y(X)^2*Ybar(X), (3, 3) = 2*H(X), (3, 4) = 1-2*H(X)*Ybar(X)*Y(X), (4, 4) = 2*H(X)*Y(X)^2*Ybar(X)^2}]

(5)

g_[]

g_[mu, nu] = (Matrix(4, 4, {(1, 1) = 2*H(X)*Ybar(X)^2, (1, 2) = 1+2*H(X)*Ybar(X)*Y(X), (1, 3) = 2*H(X)*Ybar(X), (1, 4) = -2*H(X)*Ybar(X)^2*Y(X), (2, 1) = 1+2*H(X)*Ybar(X)*Y(X), (2, 2) = 2*H(X)*Y(X)^2, (2, 3) = 2*H(X)*Y(X), (2, 4) = -2*H(X)*Y(X)^2*Ybar(X), (3, 1) = 2*H(X)*Ybar(X), (3, 2) = 2*H(X)*Y(X), (3, 3) = 2*H(X), (3, 4) = 1-2*H(X)*Ybar(X)*Y(X), (4, 1) = -2*H(X)*Ybar(X)^2*Y(X), (4, 2) = -2*H(X)*Y(X)^2*Ybar(X), (4, 3) = 1-2*H(X)*Ybar(X)*Y(X), (4, 4) = 2*H(X)*Y(X)^2*Ybar(X)^2}))

(6)

NULL

``

eqn1 := SumOverRepeatedIndices(Physics:-`*`(d_[mu](Y(Zeta, zetabar, u, v)), e_[1, `~mu`])) = 0

`[Length of output exceeds limit of 1000000]`

(7)

eqn2 := SumOverRepeatedIndices(Physics:-`*`(d_[mu](Y(Zeta, zetabar, u, v)), e_[2, `~mu`])) = 0

`[Length of output exceeds limit of 1000000]`

(8)

eqn3 := SumOverRepeatedIndices(Physics:-`*`(d_[mu](Y(Zeta, zetabar, u, v)), e_[4, `~mu`])) = x

(1/2)*(-(diff(Y(Zeta, zetabar, u, v), zetabar))*(Y(X)*Ybar(X)+1)*2^(1/2)+(diff(Y(Zeta, zetabar, u, v), u))*2^(1/2)*(Y(X)-Ybar(X))-(diff(Y(Zeta, zetabar, u, v), v))*2^(1/2)*(Y(X)-Ybar(X)))/((-(Ybar(X)^2+1)*(Y(X)^2+1)/(Y(X)-Ybar(X))^2)^(1/2)*(Y(X)-Ybar(X))) = x

(9)

eqn1 := `[Length of output exceeds limit of 1000000]` = 0

`[Length of output exceeds limit of 1000000]` = 0

(10)

algsubs(`[Length of output exceeds limit of 1000000]` = 0, `[Length of output exceeds limit of 1000000]`)

0

(11)

``

simplify(`[Length of output exceeds limit of 1000000]`)

``


Download Derive_Eq_4.4.mw

1 2 3 4 5 Page 3 of 5