NIMA112

25 Reputation

One Badge

1 years, 164 days

MaplePrimes Activity


These are questions asked by NIMA112

How I can solve a PDE on two regions with matching conditions at the common boundary?  

T1.mw

How I can plot a volumetric body with the coordinates provided in the text file attachment?

after finding the geometry curve I want to find the curve that passes through the middle source.

1.txt

hello,

I computed some algebraic calculation, but near point -1 there is some issue like disconvergencies. Can anyone help in this regard? In the final graph, as seen the paths of the curves are close together and convergence does not occur AROUND POINT -1.

restart

Digite := 30

30

(1)

beta := 2.5; lambda := 0.1e-1; b := Pi; a := Pi; alpha := 0; y[1] := 1.5; y[2] := 1.5; x[1] := -1; x[2] := 1; Q[1] := 40; Q[2] := 35; T[1] := 20

2.5

 

0.1e-1

 

Pi

 

Pi

 

0

 

1.5

 

1.5

 

-1

 

1

 

40

 

35

(2)

v := (2*n-1)*Pi/(2*b)

Delta := exp(2*v*a)*(alpha*v+beta)*(1+lambda)-(1-lambda)*(alpha*v-beta)

omega := Pi/(2*b)

P[1] := ((1+lambda)*exp(-v*abs(x-xi))+(1-lambda)*exp(v*(x+xi)))*exp(2*v*a)+(1+lambda)*exp(-v*(x+xi))+(1-lambda)*exp(v*abs(x-xi))

P[2] := ((1+lambda)*exp(-v*abs(x-xi))+(1-lambda)*exp(v*(x+xi)))*exp(2*v*a)-(1+lambda)*exp(-v*(x+xi))-(1-lambda)*exp(v*abs(x-xi))

P[3] := P[1]*(-alpha^2*v-alpha*beta+alpha*v)+beta*P[2]

G[11] := (sum((alpha*P[1]*(1-lambda)*(alpha*v-beta)*exp(-2*v*a)+(1+lambda)*P[3])*(cos(v*(y-eta))-cos(v*(y+eta)))/(v*(exp(2*v*a)*(alpha*v+beta)*(1+lambda)-(1-lambda)*(alpha*v-beta))), n = 1 .. 80))/(2*b*(1+lambda))+(2*(1+lambda)*alpha*b/Pi*.25)*ln((1+2*exp(-omega*abs(x-xi))*cos(omega*(y-eta))+exp(-2*omega*abs(x-xi)))*(1-2*exp(-omega*abs(x-xi))*cos(omega*(y+eta))+exp(-2*omega*abs(x-xi)))*(1+2*exp(-omega*(2*a+x+xi))*cos(omega*(y-eta))+exp(-2*omega*(2*a+x+xi)))*(1-2*exp(-omega*(2*a+x+xi))*cos(omega*(y+eta))+exp(-2*omega*(2*a+x+xi)))/((1-2*exp(-omega*abs(x-xi))*cos(omega*(y-eta))+exp(-2*omega*abs(x-xi)))*(1+2*exp(-omega*abs(x-xi))*cos(omega*(y+eta))+exp(-2*omega*abs(x-xi)))*(1-2*exp(-omega*(2*a+x+xi))*cos(omega*(y-eta))+exp(-2*omega*(2*a+x+xi)))*(1+2*exp(-omega*(2*a+x+xi))*cos(omega*(y+eta))+exp(-2*omega*(2*a+x+xi)))))/(2*b*(1+lambda))+(2*(1-lambda)*alpha*b/Pi*.25)*ln((1+2*exp(omega*(x+xi))*cos(omega*(y-eta))+exp(2*omega*(x+xi)))*(1-2*exp(omega*(x+xi))*cos(omega*(y+eta))+exp(2*omega*(x+xi)))*(1+2*exp(-omega*(2*a-abs(x-xi)))*cos(omega*(y-eta))+exp(-2*omega*(2*a-abs(x-xi))))*(1-2*exp(-omega*(2*a-abs(x-xi)))*cos(omega*(y+eta))+exp(-2*omega*(2*a-abs(x-xi))))/((1-2*exp(omega*(x+xi))*cos(omega*(y-eta))+exp(2*omega*(x+xi)))*(1+2*exp(omega*(x+xi))*cos(omega*(y+eta))+exp(2*omega*(x+xi)))*(1-2*exp(-omega*(2*a-abs(x-xi)))*cos(omega*(y-eta))+exp(-2*omega*(2*a-abs(x-xi))))*(1+2*exp(-omega*(2*a-abs(x-xi)))*cos(omega*(y+eta))+exp(-2*omega*(2*a-abs(x-xi))))))/(2*b*(1+lambda))

g[12] := lambda*((alpha*v+beta)*exp(v*(2*a+x))+(alpha*v-beta)*exp(-v*x))*exp(-v*xi)/(v*Delta)

G[12] := (sum(g[12]*(cos(v*(y-eta))-cos(v*(y+eta))), n = 1 .. 80))/b

phi[1] := int(int(G[11]*Q[1]*Dirac(xi-x[1])*Dirac(eta-y[1]), xi = -a .. 0), eta = 0 .. b)+int(int(G[12]*Q[2]*Dirac(xi-x[2])*Dirac(eta-y[2]), xi = 0 .. infinity), eta = 0 .. b)

Z[1] := diff(phi[1], x)

psi[1] := int(Z[1], y)

plot3d(psi[1], x = -a .. 0, y = 0 .. b)

 

with(plots)

contourplot(psi[1], x = -a .. 0, y = 0 .. b)

 

 

Download sai_1.mw

Hi everyone.

Could you please help me to obtain the results by 'solve'?

Is there any way such as numerical methods in this regard?

Fung.mws

1 2 3 Page 2 of 3