Pavel Biryukov

5 Reputation

One Badge

11 years, 172 days

MaplePrimes Activity


These are questions asked by Pavel Biryukov

Hello, everyone!


Last week I’ve encountered problems with integration of Maple 17 in Microsoft Office Excel 2013. The Maplesoft note on the point (http://www.maplesoft.com/support/faqs/detail.aspx?sid=32651) offers some ways of fixing it up, though I’ve run all of them the problem is the same:

While the connection is established, after entering the formula “=Maple(“x+x”)”, the Excel returns “Critical Error in Formula”

Before contacting the Maplesoft Technical Support, I want to ask here whether someone had the same case and managed to solve it.

Many thanks in advance.

Hello, everyone!

Last day I’ve discovered a strange behavior of the “optimization” tool:

Mostly it copes with the task – but there are cases (the data are the same) when the tool doesn’t return the opt. value: instead it returns the parameter name.
BUT if some of the previous calculations are re-evaluated (and the same input values are received) the “optimization” tools works quite well.

The question is: how to tackle the problem?

P.S. The way to force re-evaluation of previous functions in the body of this procedure (if the optimization failed) doesn’t help: it returns the optimizing parameter name once more.

Windows 8 (64-bit)
Maple 17.00

Hello, everyone!
Yesterday I accidentally rechecked the value of the integral of the function (below) and realized that it’s wrong:

f:= (x) -> (140.63530552419235473*x^4-681.04317103471061441*x^3+1204.2531184722204895*x^2-918.72829449327961838*x+254.16640660607969646)*x^10*(-5.985078986*10^(-7)*x^60+1.993612326*10^(-7)*x^61+5.369283226*10^(-8)*x^62-3.905639782*10^(-9)*x^64-1.659594038*10^(-8)*x^63+1.136103415*10^(-9)*x^65+2.247893270*10^(-10)*x^66-9.859204804*10^(-12)*x^68-6.233393896*10^(-11)*x^67+1.592005934*10^(-15)*x^73+2.636562187*10^(-12)*x^69+5.984365418*10^(-17)*x^74+3.098099702*10^(-13)*x^70-1.518364555*10^(-17)*x^75-6.215495764*10^(-15)*x^72-8.072161759*10^(-14)*x^71+7.108000000*10^(-7)-6.487695780*x^35-1.360148323*x^34+5.274954197*x^37+.278832666*x^36-.7198386404*x^43-3.348539406*x^39+.4203371703*x^38+.2531612707*x^45-.1973755246*x^44+1.711371118*x^41-.5547081746*x^40-0.7529286752e-1*x^47+0.7791628267e-1*x^46+.3904150312*x^42+0.1908735114e-1*x^49-0.2492657821e-1*x^48-0.4145806290e-2*x^51+0.6590414121e-2*x^50-0.4207722840e-4*x^56-0.1240685054e-3*x^55+0.7736126808e-3*x^53-0.1455570281e-2*x^52+0.1706676905e-4*x^57+0.5498382671e-5*x^58+0.2699386379e-3*x^54-0.2004264239e-5*x^59+.2715685673*x^10+.1111862378*x^8+.1883518910*x^9+0.2403811424e-1*x^6+0.5607230320e-1*x^7+0.8649081345e-2*x^5-3.880498062*x^31+5.968690982*x^33+2.038776931*x^32-1.725063618*x^30+1.669644062*x^29+.9016766288*x^28-.1370795088*x^25-.396947214*x^27-.348231765*x^26+.11698597*x^23+.2531405922*x^22+.1735045534*x^20-0.42936268e-1*x^19-0.39439553e-1*x^24-.3711884921*x^16+.28461699*x^21-.2677594262*x^18-.3961103119*x^17-.2103764104*x^15+0.113596644e-1*x^14+.205907773*x^13+.3148084900*x^12+.3274995670*x^11+0.5980983565e-3*x^3+0.1044830939e-3*x^2+0.2555141074e-2*x^4+0.1216249880e-4*x):

The notorious integral value:
int(f(x), x=0..2);
Maple 17 returned -2.552045317*10^6.  And what is more awkward that the result is changing over time. Despite the fact that some other computer algebra system tells me that the value must be about 6.0857912022, you can enjoy the plot of f(x):

How can we fix it?

Page 1 of 1