Prakash J

65 Reputation

3 Badges

1 years, 197 days

MaplePrimes Activity


These are questions asked by Prakash J

 

where p, q, r, a are positive constants and phi(0) be a initial condition

eq1 := diff(x(t), t) = x(K[1]-x(t))-p*x(t-tau[1])*y(t); eq2 := diff(y(t), t) = y(K[2]-x(t))-q*y(t-tau[2])*x(t);
(x*, y*):= (p*K[2]-k[1])/(p*q-1), (q*K[1]-k[2])/(p*q-1);

where, k_1, k_2, p, q, tau_1, tau_2 are positive constants

How to plot this equation with explore or animation

E[1]:=Sum((GAMMA(((beta+1)n-gamma(nu-1))+k))/(GAMMA(((beta+1)n-gamma(nu-1)))*GAMMA(rho*k + (nu(1-mu)+mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);  E[2] :=Sum((GAMMA((gamma(n+1)-beta *n)+k))/(GAMMA((gamma(n+1)-beta *n))*GAMMA(rho*k + (mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);    y(p):=Sum(c*gamma^(n)*t^(nu*(1-mu)+mu+2*mu*n-1)*E[1]+gamma^(n)t^(mu(2 n+1)-1)*E[2]*g, n=0..5);

with the conditions

mu, nu \in (0, 1); omega \in R; rho > 0; gamma, beta > or = 0; c & g are constant

How to plot u(t)= z'(t) with respect to x, y, z?

  Here,  z(t)=y'(t), y(t)=x'(t).

where, x(t)= z^3(t), y(t)= z^3(t)/2, z(t) = (a- b), a, b are time interval.

Trajectories.mw

How to solve the matrix for u(t) and plot phase trajector?

1 2 3 Page 1 of 3