85 Reputation

2 years, 241 days

How to Convert PDE to ODE?...

Maple 2018

How to conver a patial differetial equation to ordinary differential equation with or without dchange?

 >
 (1)
 >
 >
 (2)
 >

How to solve substitution?...

Maple

I have a PDE

eq1 := du/dx+dv/dy = 0; eq2 := du/dt+u*du/dx+v*du/dy-nu*d^2*u/dy^2 = 0

where u(x, y, t), v(x, y, t) and

eta(x, y, t):=y/((nu*t*cos(alpha)+(nu*x)/(U[w])*sin(alpha))^(1/(2)));

psi(x, y, t):=U[w]*(nu*t*cos(alpha)+(nu*x)/(U[w])*sin(alpha))^(1/(2))*f(eta(x,y,t));

u = diff(psi, y); v= -diff(psi, x).

How to substitiute u = diff(psi, y); v= -diff(psi, x) in eq1 and eq2, Also find the value of nu.

How do I solve ODE system?...

Maple 2018

How to solve ordinary differemtial equation system with initial conditions and boundary conditions. Here, some initial conditions are unknown variables. So how to find these  values of parameters.

eq1 := diff(f(x), x, x, x)+(1/2)*cos(alpha)*x*(diff(f(x), x, x))+(1/2)*sin(alpha)*f(x)*(diff(f(x), x, x)) = 0;

eq2 := diff(g(x), x, x)+diff(g(x), x)+(diff(g(x), x))*(diff(h(x), x))+cos(alpha)*x*(diff(g(x), x))+sin(alpha)*f(x)*g(x) = 0;

eq3 := diff(g(x), x, x)+diff(h(x), x, x)+1/2*(cos(alpha)*x+sin(alpha)*f(x)) = 0

ics:=f(0)=0, f'(0)=1, f''(0)=a[1], g(0)=1, g'(0)=a[2], h(0)=1, h'(0)=a[3];

bcs:=f(x) , g(x), h(x) tends to 0 ad x tends to infinity

How do I find a unknown values in bounda...

Maple 2018

I have some ODE system contains unknown variables with  boundary conditions  (see the attachment). How to solve these system and find the vales of unknown variables.

In this problem, the boundary conditions tends to 0, when x tends to infinity.  BVP_with_parameters.mw

 (1)

 (2)

How to solve this PDE system ?...

Maple 2018

eq1:=( d)/(dt)u+(d^(2))/(dy^(2))u + s*( d)/(dy)u + delta * theta = 0;

eq2:=( d)/(dt)theta + (d^(2))/(dy^(2))theta + s*Pr*( d)/(dy)theta +lambda* exp(theta/(1 +(epsilon*theta))) = 0;

initial and boundary conditons

t <=0; u = theta = 0, for 0 <= y  <= 1

t> 0;  u =0, theta = 0   at  y = 0;

t> 0;  u =1, theta = 0   at   y = 1  ;

where, s, epsilon, Pr, lambda, delta are arbitrary parameters

 1 2 3 4 Page 1 of 4
﻿