<

adel-00

130 Reputation

9 Badges

11 years, 316 days

MaplePrimes Activity


These are questions asked by adel-00

Dear all,

Trying to divide the function (f1) at its maximum and normalized it.. there is error on. the (proc)

could anyone help me on that PLEASE.

 

restart:
assume(Delta,real):assume(c,real):xr:=1:ao:=sqrt(1+c^2):theta:=arctan(c):a:=ao*exp(I*theta):b:=I*0.5*Delta-a*(k-1)*xr*0.5:no:=1:AA:=5:theta1:=0:Omega:=10:
f:=sqrt(Pi/ao)*exp(-I*0.5*theta)*sum(exp(b^2/a)*exp(-a*(k-1)^2*xr^2),k=1..1):alpha:=AA*exp(I*theta1):
f1:= AA^2+((Re(f))^2+(Im(f))^2)*Omega^2+2*Omega*Im(conjugate(alpha)*f):
P1:=plot3d((f1),Delta=-5..5,c=-5..5,axes=boxed,font=[1,1,18]):
Normalize:= proc(P::specfunc(anything, PLOT))
local A,Smax1;
A:= op([1,1], P);
Smax1:= max(A[..,2]);
if A::list then A:= Matrix(A) end if;
A[..,2]:= A[..,2]/Smax1;
subsop([1,1]= A, P)
end proc:
P1:= Normalize(P1):
display([P||(1..1)]);

 

Hi

 

trying to make table of points of the pair(lambda1,lambda2) to get the approximate function this technique  is called interpolation

contourplot(4*lambda2*result^2/(Pi*(lambda2+1)^2)-lambda1,lambda1=0..1,lambda2=0..1,contours=[0],axes=boxed,title=tit,titlefont=[SYMBOL,16],thickness=1,color=black,font=[1,1,18],tickmarks=[2, 4],linestyle=1,view=[0.002..1,0.002..1]);

any one knows how to find it

HI,

I would like to plot the ODE system in phase transition (3d)

I try this

var:={x1(t),x2(t),x3(t)}:
dsys:={diff(x1(t),t)=x1(t), diff(x2(t),t)=x2(t), diff(x3(t),t)=x3(t)};
   / d                  d                  d               \ 
  { --- x1(t) = x1(t), --- x2(t) = x2(t), --- x3(t) = x3(t) }
   \ dt                 dt                 dt              / 
res:=dsolve(dsys);
  {x1(t) = _C3 exp(t), x2(t) = _C2 exp(t), x3(t) = _C1 exp(t)}
plot3d(res,x1(t)=0..1,x2(t)=0..1,axes=boxed,font=[1,1,18],view=[0..0.6,0..1,-5..0]);

 

Hi all,

 how to calculate this integral:

int(sqrt(a^2+cos(x)),x=0..Pi);

 

dear all,

how can I plot

 u:=(3*x-1)*(1-x):
v:=2*x*(1-2*x):

in (u,v)-plane

where x from 0..1

 

4 5 6 7 8 9 10 Page 6 of 13