adel-00

135 Reputation

9 Badges

12 years, 12 days

MaplePrimes Activity


These are questions asked by adel-00

Hi experts,

attached the following code,, but i dont know what is the wrong with it, looking forward for helpful advise.

dsys :={diff(u(t),t)=-(N1+M*cos(2*I*omega*t))*u(t)-1+v(t)*exp(-2*I*omega*t)+w(t)*exp(2*I*omega*t), diff(v(t),t)=-(N1+I*Delta-2*M*exp(2*I*omega*t))*v(t)-(N1+u(t))*exp(2*I*omega*t)-2*M, diff(w(t),t)=-(N1-I*Delta-2*M*exp(-2*I*omega*t))*w(t)-(N1+u(t))*exp(-2*I*omega*t)-2*M}:
res:=dsolve(dsys union {u(0)=-1,v(0)=0,w(0)=0},numeric,output=listprocedure,maxfun=0):
plots[odeplot](res,[[t,(Re(w(t)))]],0..10,axes=boxed,titlefont=[SYMBOL,14],font=[1,1,18],color=black,linestyle=1,tickmarks=[3, 4],font=[1,1,14],thickness=2,titlefont=[SYMBOL,12]);
Warning, computation interrupted

Hi all,

restart;#part1
epsilon:=5:Delta1:=2:Delta2:=-4: N1:=1000:
dsys :={diff(x(t),t)=-I*Delta1*x(t)+y(t)+epsilon, diff(y(t),t)=-I*Delta2*y(t)+x(t)*z(t), diff(z(t),t)=-2*(conjugate(x(t))*y(t)+conjugate(y(t))*x(t))};

res:=dsolve(dsys union {x(0)=2*I,y(0)=0,z(0)=1},numeric,output=listprocedure);

P1:=plots:-odeplot(res,[[t,Im(y(t))],[t,Re(x(t))]],0..2):

/ d
{ --- x(t) = -2 I x(t) + y(t) + 5,
\ dt

d
--- y(t) = 4 I y(t) + x(t) z(t),
dt

d ____ ____ \
--- z(t) = -2 x(t) y(t) - 2 y(t) x(t) }
dt /
tit:=sprintf("D1=%g,D2=%g",Delta1,Delta2);
"D1=2,D2=-4"
plots[odeplot](res,[[t,Im(y(t))]],0..200,axes=boxed,titlefont=[SYMBOL,14],font=[1,1,18],color=black,linestyle=1,tickmarks=[3, 4],font=[1,1,14],thickness=2,titlefont=[SYMBOL,12]);
Warning, cannot evaluate the solution further right of 90.013890, maxfun limit exceeded (see ?dsolve,maxfun for details)

when I increase the time give this msn:

Warning, cannot evaluate the solution further right of 90.013890, maxfun limit exceeded (see ?dsolve,maxfun for details)

Hi,

I got the Real and Imaginary of an expression J1 

assume(d,real):

Gamma:=0.04:tau:=10*Pi:j:=0:

J1:=(exp((1-I*d)*Gamma*tau)-1)/((1-I*d));

J1mod:=simplify((Re(J1))^2+(Im(J1))^2): (I works here this amont is real)

################

but when I change the expression  for J1 to be

J1:=((2*e^(-2^(-j-1)*(1-I*d))-e^(-2^(-j)*(1-I*d))-1)*exp((1-I*d)*Gamma*tau)-1)/((1-I*d)):

J1mod:=simplify((Re(J1))^2+(Im(J1))^2): 

J1mod here is complex(I dont know why? it doesnt separate the real and the im )

Any comments will help

Thanks

Solve IVP with complex coef. with compplex varables numerically..

the sys. is x'=-iDelta1x(t)+y(t)+epsilon

y'=-iDelta2y(t)+x(t)z(t)

z'=-2(x*(t)y(t)+x(t)y*(t)), where * means complex conjugate 

I solve it as:

epsilon:=5:Delta1:=4:Delta2:=4:assume(z(t),real):

var:={x_R(t),y_R(t),z_R(t),x_I(t),y_I(t),z_I(t)}:
dsys :={diff(x(t),t)=-I*Delta1*x(t)+y(t)+epsilon, diff(y(t),t)=-I*Delta2*y(t)+x(t)*z(t), diff(z(t),t)=-2*(conjugate(x(t))*y(t)+conjugate(y(t))*x(t))}:
functions := indets(dsys, anyfunc(identical(t))):
redefinitions := map(f -> f = cat(op(0, f), _R)(t) + I*cat(op(0,f), _I)(t), functions):
newsys := map(evalc @ Re, redefinitions) union map(evalc @ Im, redefinitions):

incs := {x_R(0)=0, x_I(0)=0, y_R(0)=0, y_I(0)=0,z_R(0)=-1/2, z_I(0)=0}:
dsol1 :=dsolve({newsys,incs},var,numeric, output=listprocedure, abserr=1e-9, relerr=1e-8,range=0..1):

but it seems there is not runing propebly

 

Hello every one,

I had a 3 equations with 3 unknown (X,Y,Z, conjugate(Y),conjugate(Z))

this is the code:

solve( {ao*x + a1*y + conjugate(a1)*conjugate(y)+a2*z+conjugate(a2)*conjugate(z) = 0.5, conjugate(a1)*x + bo*y + conjugate(a2)*conjugate(y)+a1*z = 0, 10*x + 10*y/4 + 10*z = 10}, {x, y, z});

where the coefficients are complex numbers

Is thee any simple way to solve it

thanks

First 7 8 9 10 11 12 13 Page 9 of 13