## 135 Reputation

13 years, 240 days

## shorter form...

what u mean by shorter form

p:=plot((Spec(d)),d=-10..10,axes=boxed,title=tit,color=black,font=[2,3,18],thickness=2,tickmarks=[3,3],titlefont=[SYMBOL,14],font=[1,1,18],linestyle=1);

## stell when I set the parameters the...

stell when I set the parameters theta:=Pi/3;phi:=Pi;

## explanation...

can you explane

A:= op([1,1], P):  #The data matrix from the plot
Smax1:= max(A[..,2]):
A[..,2]:= A[..,2]/Smax1:
P:= subsop([1,1]= A, P):
print(P);

where I put them before the plot??

## example...

for a simple example:

if f(x)=x^2+1

so its max value is:

Xmax:=max(seq(evalf(x^2+1),x=0..10));

then it is easy to plot

f(x)/Xmax

but in my problem it isnt work!!!!!

## explicit...

can we find the roots without substitute b and k

## loop...

can I do it in two loops

one for t the other for n

## roots...

I tried to find a root of polynomail of higer degree than that one, and i get the roots why this one not possible??

eq5:=u->-(2*(1+2*u+k*u^2))*(-2-3*k*u+k^2*u^3)*(-2*k^2*u^4-8*k*u^3-4*k*u^2+b*k*u^2-8*u^2-8*u-2-b);

sol:=(solve(eq5(u),u)): S:=array([],1..3): S[1]:=(eval(sol[1])):S[2]:=sol[2]:S[3]:=sol[3]:

r=S[1];
(1/2)
-1 + (-k + 1)
r = ------------------
k

please nedd help to find the roots of this polynomail of degree 6 withot setting values of k and b

eq5:=u->-3*b*k*u^2-3*b*k^2*u^4-k^3*u^6*b+k*u+5*k^2*u^3-b;

## thanks...

This's what i'm looking for...Many thanks

## thanks...

This's what i'm looking for...Many thanks

## I tried: eq1:=(alpha+(l+alpha)*u+alpha*...

I tried:

`eq1:=(alpha+(l+alpha)*u+alpha*k*u^2)*a=u*(alpha+(l+alpha)*u+alpha*k*u^2)*(1+l*alpha*b/((alpha+(l+alpha)*u+alpha*k*u^2))):eq2:=a=(u*(1+l*v/(1+u+k*u^2))):factor((rhs-lhs)(eq1)):eq1:=collect(%,u): factor((rhs-lhs)(eq2)): eq2:=collect(%,u):sp1:=unapply(eq1,u,a):sp2:=unapply(eq2,u,a,v):`
`a:=array(0..N1,[]):u:=array(0..N1,[]):v:=array(0..N1,[]):`
`pt1:=array(0..N1,[]): #t0:=0.0:tN:=60.0: N1:=500;th:=evalf((tN-t0)/N1):for i from 0 to N1 do u[i]:=evalf(th*i):`
`v[i]:=evalf(th*i):`
`evalf(sp1(u[i],a[i]));`
`evalf(sp2(u[i],a[i],v[i])));`
`pt1[i]:=[u[i],a[i]]:od;`

## I tried: eq1:=(alpha+(l+alpha)*u+alpha*...

I tried:

`eq1:=(alpha+(l+alpha)*u+alpha*k*u^2)*a=u*(alpha+(l+alpha)*u+alpha*k*u^2)*(1+l*alpha*b/((alpha+(l+alpha)*u+alpha*k*u^2))):eq2:=a=(u*(1+l*v/(1+u+k*u^2))):factor((rhs-lhs)(eq1)):eq1:=collect(%,u): factor((rhs-lhs)(eq2)): eq2:=collect(%,u):sp1:=unapply(eq1,u,a):sp2:=unapply(eq2,u,a,v):`
`a:=array(0..N1,[]):u:=array(0..N1,[]):v:=array(0..N1,[]):`
`pt1:=array(0..N1,[]): #t0:=0.0:tN:=60.0: N1:=500;th:=evalf((tN-t0)/N1):for i from 0 to N1 do u[i]:=evalf(th*i):`
`v[i]:=evalf(th*i):`
`evalf(sp1(u[i],a[i]));`
`evalf(sp2(u[i],a[i],v[i])));`
`pt1[i]:=[u[i],a[i]]:od;`

I was thinking in easiest way by plug these two equations in  for loop to get (a,u) from the first equation thenn (a,v) since v depend on (a,u).

Can you plz help on that.

I was thinking in easiest way by plug these two equations in  for loop to get (a,u) from the first equation thenn (a,v) since v depend on (a,u).

Can you plz help on that.

## points...

First I would like to thank u for ur quick reply.

I need some explanations plz..

First, is it possible to define an implicit eqs as:

`eq1:=(alpha+(l+alpha)*u+alpha*k*u^2)*a=u*(alpha+(l+alpha)*u+alpha*k*u^2)*(1+l*alpha*b/((alpha+(l+alpha)*u+alpha*k*u^2)));`
`and `
`eq2:=a=(u*(1+l*v/(1+u+k*u^2)));`
`when you define`
`points:=seq([a,fsolve(eval(eq1,params),u)],a=0..20); was this means that points (a,u) becuase the roots of u are one real and two complex conjugates..and i want the real one.`
`Note eq1 is F(a,u) and eq2 is g(a,u,v)`
`my goal is to plot points (a,v)`
`Thanks in advanced.`

## points...

First I would like to thank u for ur quick reply.

I need some explanations plz..

First, is it possible to define an implicit eqs as:

`eq1:=(alpha+(l+alpha)*u+alpha*k*u^2)*a=u*(alpha+(l+alpha)*u+alpha*k*u^2)*(1+l*alpha*b/((alpha+(l+alpha)*u+alpha*k*u^2)));`
`and `
`eq2:=a=(u*(1+l*v/(1+u+k*u^2)));`
`when you define`
`points:=seq([a,fsolve(eval(eq1,params),u)],a=0..20); was this means that points (a,u) becuase the roots of u are one real and two complex conjugates..and i want the real one.`
`Note eq1 is F(a,u) and eq2 is g(a,u,v)`
`my goal is to plot points (a,v)`
`Thanks in advanced.`
 First 9 10 11 12 Page 11 of 12
﻿