delvin

50 Reputation

5 Badges

2 years, 148 days

MaplePrimes Activity


These are replies submitted by delvin

 

 

 

NULL

restart

with(student)

eq1 := 12*beta^3*rho[3]^2*(diff(w(psi), `$`(psi, 2)))+(-3*beta*rho[2]^2+4*omega*rho[3]^2)*w(psi)+beta*rho[3]^2*(rho[1]+2*rho[3])*w(psi)^3

12*beta^3*rho[3]^2*(diff(diff(w(psi), psi), psi))+(-3*beta*rho[2]^2+4*omega*rho[3]^2)*w(psi)+beta*rho[3]^2*(rho[1]+2*rho[3])*w(psi)^3

"w(psi):=kappa[0]+sum(kappa[i]*((diff(E(psi),psi))^(i))/((E(psi))^(i)),i=1..1)+sum(h[i]*(((diff(E(psi),psi))^())/((E(psi))^()))^(-i),i=1..1)"

proc (psi) options operator, arrow, function_assign; kappa[0]+sum(kappa[i]*(diff(E(psi), psi))^i/E(psi)^i, i = 1 .. 1)+sum(h[i]*((diff(E(psi), psi))/E(psi))^(-i), i = 1 .. 1) end proc

"E(psi):=((epsilon[1]*jacobiCN(Zeta[1]*psi))+(epsilon[2]*jacobiSN(Zeta[2]*psi)))/((epsilon[3]*jacobiCN(Zeta[3]*psi))+(epsilon[4]*jacobiSN(Zeta[4]*psi))) ;"

proc (psi) options operator, arrow, function_assign; (varepsilon[1]*jacobiCN(Zeta[1]*psi)+varepsilon[2]*jacobiSN(Zeta[2]*psi))/(varepsilon[3]*jacobiCN(Zeta[3]*psi)+varepsilon[4]*jacobiSN(Zeta[4]*psi)) end proc

NULL

fin1 := simplify(eq1)

#Extremely long output that neither displays well on MaplePrimes nor contributes to
#understanding the Question deleted by Moderator. -- Carl Love

Sol := solve(fin1, {beta, omega, Zeta[1], Zeta[2], Zeta[3], Zeta[4], epsilon[1], epsilon[2], epsilon[3], epsilon[4], h[1], kappa[0], kappa[1]})

for i to 2 do Case[i] := allvalues(Sol[i]) end do

NULL

Download Jaco01.mw

 

@mmcdara 

Thanks for your hard work on this.

I waited a little to upload quickly, but it was long yesterday.

Now the answers are different!!!

334.mw

@mmcdara 

It didn't work, I had to stop.

1369.mw

@mmcdara

Yes, I checked and understood the first part.

 

But I didn't understand the second part, that is, I know what you did until the green part.

3201.mw

@mmcdara 

I want to solve equation 3-4. For this, we assume that we have the equation 2-9 where the values of m = n = 3. Then the answers to 3-5 and 3-6 are obtained. But it does not happen in practice???

Why didn't you consider the first two terms?

@dharr 

 Thanks,

Now the last answers of the program (photo) are not available. What should I do?

@mmcdara 

 I really appreciate your taking the time to explain things.

@mmcdara 

 Does it mean that sometimes luck works and it is wrong? There is no way to get values like the previous file that answered?

@acer 

I appreciate your taking the time.

@acer 

I appreciate it.

@mmcdara 

Much obliged.

Yes, I don't know why this happened.

I can't do the second part either, that is, when the number becomes a fraction, the variable is changed.

@acer 

I’m so grateful.

How do I do this?

03.mw

@mmcdara 

Thank you for helping me.

But unfortunately there is an error.

``

``

restart

alias(U = U(xi))

``

"Balance:=proc(EQ)"

Error, unterminated procedure

"Balance:=proc(EQ)"

 

_local(eq); 1; eq := eval(EQ, Diff = diff)

EQ

(1)

_local(HODD); 1; HODD := degree(eval(eval(eq, U = exp(__k*xi)), xi = 0), __k)

0

(2)

_local(HNLD); 1; HNLD := degree(eval(eq, U = __C), __C)

0

(3)

M = solve(HNLD*M = HODD+M)

M = 0

(4)

"end proc:"

Error, unable to parse

"end proc:"

 

eq := a*U+b*U^2+diff(U, `$`(xi, 2))+diff(U, xi)

``

Balance(eq)

Balance(a*U+b*U^2+diff(diff(U, xi), xi)+diff(U, xi))

(5)

eq := a*U+b*U^2+Diff(U, `$`(xi, 2))+Diff(U, xi)

``

Balance(eq)

Balance(a*U+b*U^2+Diff(U, xi, xi)+Diff(U, xi))

(6)

eq := a*U+b/U^2+diff(U, `$`(xi, 5))+diff(U, `$`(xi, 3))+c*U^3; Balance(eq)

Balance(a*U+b/U^2+diff(diff(diff(diff(diff(U, xi), xi), xi), xi), xi)+diff(diff(diff(U, xi), xi), xi)+c*U^3)

(7)

``

Download Balance.mw

Hello
How can we solve EQ equations?

``

``

``

NULL

``

restart

with(student)

U := a[0]+sum(-a[i]*tanh(xi[n])^i, i = 1 .. 1)+sum(-b[i]*tanh(xi[n])^(-i), i = 1 .. 1)

a[0]-a[1]*tanh(xi[n])-b[1]/tanh(xi[n])

(1)

u(xi[n+1]) := a[0]-a[1]*(tanh(xi[n])+tanh(d))/(1+tanh(xi[n])*tanh(d))-b[1]*(1+tanh(xi[n])*tanh(d))/(tanh(xi[n])+tanh(d))

a[0]-a[1]*(tanh(xi[n])+tanh(d))/(1+tanh(xi[n])*tanh(d))-b[1]*(1+tanh(xi[n])*tanh(d))/(tanh(xi[n])+tanh(d))

(2)

u(xi[n-1]) := a[0]-a[1]*(tanh(xi[n])-tanh(d))/(1-tanh(xi[n])*tanh(d))-b[1]*(1-tanh(xi[n])*tanh(d))/(tanh(xi[n])-tanh(d))

a[0]-a[1]*(tanh(xi[n])-tanh(d))/(1-tanh(xi[n])*tanh(d))-b[1]*(1-tanh(xi[n])*tanh(d))/(tanh(xi[n])-tanh(d))

(3)

eq := diff(U, `$`(xi[n], 2))-(diff(U, xi[n]))-1-u(xi[n-1])+2*U-u(xi[n+1])

2*a[1]*tanh(xi[n])*(1-tanh(xi[n])^2)-2*b[1]*(1-tanh(xi[n])^2)^2/tanh(xi[n])^3-2*b[1]*(1-tanh(xi[n])^2)/tanh(xi[n])+a[1]*(1-tanh(xi[n])^2)-b[1]*(1-tanh(xi[n])^2)/tanh(xi[n])^2-1+a[1]*(tanh(xi[n])-tanh(d))/(1-tanh(xi[n])*tanh(d))+b[1]*(1-tanh(xi[n])*tanh(d))/(tanh(xi[n])-tanh(d))-2*a[1]*tanh(xi[n])-2*b[1]/tanh(xi[n])+a[1]*(tanh(xi[n])+tanh(d))/(1+tanh(xi[n])*tanh(d))+b[1]*(1+tanh(xi[n])*tanh(d))/(tanh(xi[n])+tanh(d))

(4)

U := a[0]-a[1]*tanh(xi[n])-b[1]/tanh(xi[n])

a[0]-a[1]*tanh(xi[n])-b[1]/tanh(xi[n])

(5)

simplify(eq); fin1 := simplify(numer(%))

-2*tanh(xi[n])^10*tanh(d)^2*a[1]-tanh(xi[n])^9*tanh(d)^2*a[1]+(2*a[1]*tanh(d)^4+2*a[1])*tanh(xi[n])^8+(a[1]*tanh(d)^4+(a[1]+b[1]-1)*tanh(d)^2+a[1])*tanh(xi[n])^7+(-2*b[1]*tanh(d)^4+2*tanh(d)^2*b[1]-2*a[1])*tanh(xi[n])^6+((-a[1]-b[1]+1)*tanh(d)^4+(-a[1]-b[1])*tanh(d)^2-a[1]-b[1]+1)*tanh(xi[n])^5+(-2*a[1]*tanh(d)^4+2*a[1]*tanh(d)^2-2*b[1])*tanh(xi[n])^4+(b[1]*tanh(d)^4+(a[1]+b[1]-1)*tanh(d)^2+b[1])*tanh(xi[n])^3+(2*b[1]*tanh(d)^4+2*b[1])*tanh(xi[n])^2-tanh(xi[n])*tanh(d)^2*b[1]-2*tanh(d)^2*b[1]

(6)

subs(tanh(xi[n]) = Psi, fin1); fin := simplify(%)

(-2*(Psi^6*a[1]+(1/2)*Psi^5*a[1]+(-(1/2)*a[1]-(1/2)*b[1]+1/2)*Psi^3+(1/2)*Psi*b[1]+b[1])*(Psi+1)^2*(Psi-1)^2*cosh(d)^4+2*(Psi+1)*(Psi-1)*(Psi^8*a[1]+(1/2)*Psi^7*a[1]-Psi^6*a[1]+(-a[1]-(1/2)*b[1]+1/2)*Psi^5+(-a[1]+b[1])*Psi^4+((1/2)*a[1]+b[1]-1/2)*Psi^3+Psi^2*b[1]-(1/2)*Psi*b[1]-b[1])*cosh(d)^2+2*Psi^2*(Psi^6*a[1]+(1/2)*Psi^5*a[1]-Psi^4*b[1]+(-(1/2)*a[1]-(1/2)*b[1]+1/2)*Psi^3-Psi^2*a[1]+(1/2)*Psi*b[1]+b[1]))/cosh(d)^4

(7)

for i from 0 to degree(fin, Psi) do EQ[i] := simplify(coeff(fin, Psi, i)) end do

-2*sinh(d)^2*a[1]/cosh(d)^2

(8)

example("??")

``

Download 01.mw

@Carl Love 

It is solved for another equation.

1 2 3 4 5 6 7 Page 2 of 8