litun

95 Reputation

7 Badges

12 years, 156 days

MaplePrimes Activity


These are questions asked by litun

I want to cancell the common factors in Maple using some simple code. I use both factor and normal command to cancell two factors which are equal upto certain places of decimal and then after that the factors differ in their digits.

e.g.,

1.520790243780735576142660664279654952049482710775236871695628058010

1.520790243780735576142660664279654952049482702492695064053058915917

which match upto more than 40 digits.

 Using fnormal(f(x),40), both factors are cancelled automatically.

 

Is there any such code to canell the above factors as well as the following one,

e.g.,

0 and

4.9482702492695064053058915917266066427965495204 10^(-101)

I have a rational function

R(s)=(s+21.2618806754099918582959684287)*(s+11.5825785765671047665686926962)*(s+2.32652929385663964079968631791)*(s+1.59184930187007023058678840475)*(s+.810126597053864402120805704729)*(s+.767936478999246633196341750975)*(s+.389728032793176474756405528288)*(s+.389709386740696868210134112440)*(s+.384534001672741409749016411776)*(s+.211738661184088496193941380283)*(s+.211735400886327624028116769728)*(s+0.123260440562617421046327062708e-1)*(s+0.749282759458414677904525855939e-2)*(s+0.129947118285955895103018704133e-2)*(s+0.128454333534479589397814117349e-2)*(s+0.342482256507583139104896521750e-3)*(s+0.342471571076865824849860353286e-3)/(s+21.2618806754099918582960530179)*(s+21.1471825573992794470615428324)*(s+2.32652929385663964079964525218)*(s+2.28350165975702233286000082419)*(s+.810126597053864402120855775248)*(s+.804997206582678244211665005890)*(s+.389728032793176474755312749208)*(s+.389718248252695846631246554139)*(s+.384534001672741409750430258543)*(s+.243633167007009257956784127718)*(s+.211735400886327624028133231990)*(s+.211726934369736929202050835884)*(s+0.749282759458414677904914554540e-2)*(s+0.555247691543530827690454070563e-2)*(s+0.128454333534479589395816020810e-2)*(s+0.126961222591792792857168643430e-2)*(s+0.342471571076865824866184397991e-3)*(s+0.342461825593204099734633561207e-3)

I want to cancell the roots which are equal up to 7 digits?

How to write a maple code for this problem?

How to find the sum of the products given below

where I couldn't write j not equal to i in the product. 

sum(a[i],i=1..n)*product(s-b[j],j=1..n)

I have  

a(t):= (0.4292960410)*(t^3+20.0*t^2+105.0*t+138.0)^5/((t+1.881246817-0.5978370144*I)*(t+2.472494183-0.1946676251*I)*(t+5.550661347)*(t+5.496908401)*(t+12.46933729)*(t+12.44618893-0.9642646277e-2*I)*(t+0.5725282710)*(t+5.589440415)*(t+12.49222265)*(t+12.44618893)*(t+12.46933729)*(t+5.496908401)*(t+5.550661347)*(t+2.472494183+0.1946676251*I)*(t+1.881246817+0.5978370144*I))

 

b(t)=(1.8*t^2+34.1*t+138.)/(t^3+20.*t^2+105.*t+138.)

 

and 

 

F(t):={0.5738910678*a(t)*[1-b(t)]}/t*0.5137681159

I have expanded F(t) in series form using taylor series expansion formula in terms of t.

My question is 

                           Can it be expanded in series form in terms of b(t).

How to write the product  A_i=prod(s_j/{s_i-s_j},j=1..50, j not=  i)

1 2 3 4 5 6 Page 3 of 6