mehdi jafari

749 Reputation

13 Badges

11 years, 87 days

MaplePrimes Activity


These are answers submitted by mehdi jafari

when u assign sth to a symbol it gets its value and when u execute that,it will return the value not itself ! use eval instead ! 

 

restart

E := D*F

D*F

(1)

eval(E, {D = A*x}); eval(%, A = b^2*c)

A*x*F

b^2*c*x*F

(2)

%?

%?

 

Download eval.mws

here is one way :


``

restart

A := Matrix(6, 6, symbol = a)-Matrix(6, 6, symbol = a, shape = diagonal)+Matrix(6, 6, shape = identity)

A := Matrix(6, 6, {(1, 1) = 1, (1, 2) = a[1, 2], (1, 3) = a[1, 3], (1, 4) = a[1, 4], (1, 5) = a[1, 5], (1, 6) = a[1, 6], (2, 1) = a[2, 1], (2, 2) = 1, (2, 3) = a[2, 3], (2, 4) = a[2, 4], (2, 5) = a[2, 5], (2, 6) = a[2, 6], (3, 1) = a[3, 1], (3, 2) = a[3, 2], (3, 3) = 1, (3, 4) = a[3, 4], (3, 5) = a[3, 5], (3, 6) = a[3, 6], (4, 1) = a[4, 1], (4, 2) = a[4, 2], (4, 3) = a[4, 3], (4, 4) = 1, (4, 5) = a[4, 5], (4, 6) = a[4, 6], (5, 1) = a[5, 1], (5, 2) = a[5, 2], (5, 3) = a[5, 3], (5, 4) = a[5, 4], (5, 5) = 1, (5, 6) = a[5, 6], (6, 1) = a[6, 1], (6, 2) = a[6, 2], (6, 3) = a[6, 3], (6, 4) = a[6, 4], (6, 5) = a[6, 5], (6, 6) = 1})

(1)

X := Matrix(6, symbol = x, shape = diagonal)

X := Matrix(6, 6, {(1, 1) = x[1, 1], (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (2, 1) = 0, (2, 2) = x[2, 2], (2, 3) = 0, (2, 4) = 0, (2, 5) = 0, (2, 6) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = x[3, 3], (3, 4) = 0, (3, 5) = 0, (3, 6) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = x[4, 4], (4, 5) = 0, (4, 6) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 0, (5, 5) = x[5, 5], (5, 6) = 0, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = 0, (6, 5) = 0, (6, 6) = x[6, 6]})

(2)

G := Matrix(6, 6, 6)

G := Matrix(6, 6, {(1, 1) = 6, (1, 2) = 6, (1, 3) = 6, (1, 4) = 6, (1, 5) = 6, (1, 6) = 6, (2, 1) = 6, (2, 2) = 6, (2, 3) = 6, (2, 4) = 6, (2, 5) = 6, (2, 6) = 6, (3, 1) = 6, (3, 2) = 6, (3, 3) = 6, (3, 4) = 6, (3, 5) = 6, (3, 6) = 6, (4, 1) = 6, (4, 2) = 6, (4, 3) = 6, (4, 4) = 6, (4, 5) = 6, (4, 6) = 6, (5, 1) = 6, (5, 2) = 6, (5, 3) = 6, (5, 4) = 6, (5, 5) = 6, (5, 6) = 6, (6, 1) = 6, (6, 2) = 6, (6, 3) = 6, (6, 4) = 6, (6, 5) = 6, (6, 6) = 6})

(3)

A.X

Matrix(6, 6, {(1, 1) = x[1, 1], (1, 2) = a[1, 2]*x[2, 2], (1, 3) = a[1, 3]*x[3, 3], (1, 4) = a[1, 4]*x[4, 4], (1, 5) = a[1, 5]*x[5, 5], (1, 6) = a[1, 6]*x[6, 6], (2, 1) = a[2, 1]*x[1, 1], (2, 2) = x[2, 2], (2, 3) = a[2, 3]*x[3, 3], (2, 4) = a[2, 4]*x[4, 4], (2, 5) = a[2, 5]*x[5, 5], (2, 6) = a[2, 6]*x[6, 6], (3, 1) = a[3, 1]*x[1, 1], (3, 2) = a[3, 2]*x[2, 2], (3, 3) = x[3, 3], (3, 4) = a[3, 4]*x[4, 4], (3, 5) = a[3, 5]*x[5, 5], (3, 6) = a[3, 6]*x[6, 6], (4, 1) = a[4, 1]*x[1, 1], (4, 2) = a[4, 2]*x[2, 2], (4, 3) = a[4, 3]*x[3, 3], (4, 4) = x[4, 4], (4, 5) = a[4, 5]*x[5, 5], (4, 6) = a[4, 6]*x[6, 6], (5, 1) = a[5, 1]*x[1, 1], (5, 2) = a[5, 2]*x[2, 2], (5, 3) = a[5, 3]*x[3, 3], (5, 4) = a[5, 4]*x[4, 4], (5, 5) = x[5, 5], (5, 6) = a[5, 6]*x[6, 6], (6, 1) = a[6, 1]*x[1, 1], (6, 2) = a[6, 2]*x[2, 2], (6, 3) = a[6, 3]*x[3, 3], (6, 4) = a[6, 4]*x[4, 4], (6, 5) = a[6, 5]*x[5, 5], (6, 6) = x[6, 6]})

(4)

Equate(Typesetting:-delayDotProduct(A, X), G);

[x[1, 1] = 6, a[1, 2]*x[2, 2] = 6, a[1, 3]*x[3, 3] = 6, a[1, 4]*x[4, 4] = 6, a[1, 5]*x[5, 5] = 6, a[1, 6]*x[6, 6] = 6, a[2, 1]*x[1, 1] = 6, x[2, 2] = 6, a[2, 3]*x[3, 3] = 6, a[2, 4]*x[4, 4] = 6, a[2, 5]*x[5, 5] = 6, a[2, 6]*x[6, 6] = 6, a[3, 1]*x[1, 1] = 6, a[3, 2]*x[2, 2] = 6, x[3, 3] = 6, a[3, 4]*x[4, 4] = 6, a[3, 5]*x[5, 5] = 6, a[3, 6]*x[6, 6] = 6, a[4, 1]*x[1, 1] = 6, a[4, 2]*x[2, 2] = 6, a[4, 3]*x[3, 3] = 6, x[4, 4] = 6, a[4, 5]*x[5, 5] = 6, a[4, 6]*x[6, 6] = 6, a[5, 1]*x[1, 1] = 6, a[5, 2]*x[2, 2] = 6, a[5, 3]*x[3, 3] = 6, a[5, 4]*x[4, 4] = 6, x[5, 5] = 6, a[5, 6]*x[6, 6] = 6, a[6, 1]*x[1, 1] = 6, a[6, 2]*x[2, 2] = 6, a[6, 3]*x[3, 3] = 6, a[6, 4]*x[4, 4] = 6, a[6, 5]*x[5, 5] = 6, x[6, 6] = 6]

(5)

``

``


Download matrix.mw


restart:q:=x+y;

x+y

(1)

f := unapply(q, x, y);c:=10^(-1):

proc (x, y) options operator, arrow; x+y end proc

(2)

 G(x,y,xi,eta,t):=(1+2*(sum((exp(-Pi^(2)*n^(2)*c*t))*cos(n*Pi*x)*cos(n*Pi*xi),n=1..10)))*(1+2*(sum((exp(-Pi^(2)*m^(2)*c*t))*cos(m*Pi*y)*cos(m*Pi*eta),m=1..10)));

(1+2*exp(-(1/10)*Pi^2*t)*cos(Pi*x)*cos(Pi*xi)+2*exp(-(2/5)*Pi^2*t)*cos(2*Pi*x)*cos(2*Pi*xi)+2*exp(-(9/10)*Pi^2*t)*cos(3*Pi*x)*cos(3*Pi*xi)+2*exp(-(8/5)*Pi^2*t)*cos(4*Pi*x)*cos(4*Pi*xi)+2*exp(-(5/2)*Pi^2*t)*cos(5*Pi*x)*cos(5*Pi*xi)+2*exp(-(18/5)*Pi^2*t)*cos(6*Pi*x)*cos(6*Pi*xi)+2*exp(-(49/10)*Pi^2*t)*cos(7*Pi*x)*cos(7*Pi*xi)+2*exp(-(32/5)*Pi^2*t)*cos(8*Pi*x)*cos(8*Pi*xi)+2*exp(-(81/10)*Pi^2*t)*cos(9*Pi*x)*cos(9*Pi*xi)+2*exp(-10*Pi^2*t)*cos(10*Pi*x)*cos(10*Pi*xi))*(1+2*exp(-(1/10)*Pi^2*t)*cos(Pi*y)*cos(Pi*eta)+2*exp(-(2/5)*Pi^2*t)*cos(2*Pi*y)*cos(2*Pi*eta)+2*exp(-(9/10)*Pi^2*t)*cos(3*Pi*y)*cos(3*Pi*eta)+2*exp(-(8/5)*Pi^2*t)*cos(4*Pi*y)*cos(4*Pi*eta)+2*exp(-(5/2)*Pi^2*t)*cos(5*Pi*y)*cos(5*Pi*eta)+2*exp(-(18/5)*Pi^2*t)*cos(6*Pi*y)*cos(6*Pi*eta)+2*exp(-(49/10)*Pi^2*t)*cos(7*Pi*y)*cos(7*Pi*eta)+2*exp(-(32/5)*Pi^2*t)*cos(8*Pi*y)*cos(8*Pi*eta)+2*exp(-(81/10)*Pi^2*t)*cos(9*Pi*y)*cos(9*Pi*eta)+2*exp(-10*Pi^2*t)*cos(10*Pi*y)*cos(10*Pi*eta))

(3)

w:=int(int(f(xi,eta)*G(x,y,xi,eta,t), eta=0..1), xi=0..1);W:=unapply(w,x,y,t);

-(1/99225)*(-99225*exp(20*Pi^2*t)*Pi^2+1254400*cos(Pi*x)^9*exp((119/10)*Pi^2*t)-2822400*cos(Pi*x)^7*exp((119/10)*Pi^2*t)+518400*cos(Pi*x)^7*exp((151/10)*Pi^2*t)+2116800*cos(Pi*x)^5*exp((119/10)*Pi^2*t)-907200*cos(Pi*x)^5*exp((151/10)*Pi^2*t)+254016*cos(Pi*x)^5*exp((35/2)*Pi^2*t)-588000*cos(Pi*x)^3*exp((119/10)*Pi^2*t)+453600*cos(Pi*x)^3*exp((151/10)*Pi^2*t)+176400*cos(Pi*x)^3*exp((191/10)*Pi^2*t)-317520*cos(Pi*x)^3*exp((35/2)*Pi^2*t)+44100*cos(Pi*x)*exp((119/10)*Pi^2*t)-56700*cos(Pi*x)*exp((151/10)*Pi^2*t)-132300*cos(Pi*x)*exp((191/10)*Pi^2*t)+79380*cos(Pi*x)*exp((35/2)*Pi^2*t)+396900*cos(Pi*x)*exp((199/10)*Pi^2*t)+396900*cos(Pi*y)*exp((199/10)*Pi^2*t)-317520*cos(Pi*y)^3*exp((35/2)*Pi^2*t)+453600*cos(Pi*y)^3*exp((151/10)*Pi^2*t)-588000*cos(Pi*y)^3*exp((119/10)*Pi^2*t)+518400*cos(Pi*y)^7*exp((151/10)*Pi^2*t)-2822400*cos(Pi*y)^7*exp((119/10)*Pi^2*t)+44100*cos(Pi*y)*exp((119/10)*Pi^2*t)+1254400*cos(Pi*y)^9*exp((119/10)*Pi^2*t)-907200*cos(Pi*y)^5*exp((151/10)*Pi^2*t)+2116800*cos(Pi*y)^5*exp((119/10)*Pi^2*t)+176400*cos(Pi*y)^3*exp((191/10)*Pi^2*t)-132300*cos(Pi*y)*exp((191/10)*Pi^2*t)+79380*cos(Pi*y)*exp((35/2)*Pi^2*t)-56700*cos(Pi*y)*exp((151/10)*Pi^2*t)+254016*cos(Pi*y)^5*exp((35/2)*Pi^2*t))*exp(-20*Pi^2*t)/Pi^2

 

proc (x, y, t) options operator, arrow; -(1/99225)*(518400*cos(Pi*x)^7*exp((151/10)*Pi^2*t)+2116800*cos(Pi*x)^5*exp((119/10)*Pi^2*t)-907200*cos(Pi*x)^5*exp((151/10)*Pi^2*t)+254016*cos(Pi*x)^5*exp((35/2)*Pi^2*t)-588000*cos(Pi*x)^3*exp((119/10)*Pi^2*t)+453600*cos(Pi*x)^3*exp((151/10)*Pi^2*t)+176400*cos(Pi*x)^3*exp((191/10)*Pi^2*t)-317520*cos(Pi*x)^3*exp((35/2)*Pi^2*t)+44100*cos(Pi*x)*exp((119/10)*Pi^2*t)-56700*cos(Pi*x)*exp((151/10)*Pi^2*t)-132300*cos(Pi*x)*exp((191/10)*Pi^2*t)+79380*cos(Pi*x)*exp((35/2)*Pi^2*t)+396900*cos(Pi*x)*exp((199/10)*Pi^2*t)+396900*cos(Pi*y)*exp((199/10)*Pi^2*t)-317520*cos(Pi*y)^3*exp((35/2)*Pi^2*t)+453600*cos(Pi*y)^3*exp((151/10)*Pi^2*t)-588000*cos(Pi*y)^3*exp((119/10)*Pi^2*t)+518400*cos(Pi*y)^7*exp((151/10)*Pi^2*t)-2822400*cos(Pi*y)^7*exp((119/10)*Pi^2*t)+44100*cos(Pi*y)*exp((119/10)*Pi^2*t)+1254400*cos(Pi*y)^9*exp((119/10)*Pi^2*t)-907200*cos(Pi*y)^5*exp((151/10)*Pi^2*t)+2116800*cos(Pi*y)^5*exp((119/10)*Pi^2*t)+176400*cos(Pi*y)^3*exp((191/10)*Pi^2*t)-132300*cos(Pi*y)*exp((191/10)*Pi^2*t)+79380*cos(Pi*y)*exp((35/2)*Pi^2*t)-56700*cos(Pi*y)*exp((151/10)*Pi^2*t)+254016*cos(Pi*y)^5*exp((35/2)*Pi^2*t)-99225*exp(20*Pi^2*t)*Pi^2+1254400*cos(Pi*x)^9*exp((119/10)*Pi^2*t)-2822400*cos(Pi*x)^7*exp((119/10)*Pi^2*t))*exp(-20*Pi^2*t)/Pi^2 end proc

(4)

plot(W(.51086, .49427, t), t = 0 .. 1);

 

plottools:-getdata(%); M := %[-1]; #ExportMatrix("new2.dat", M);

["curve", [0. .. 1., 1.00243326872752547 .. 1.00544209665487538], Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})]

 

M := Vector(4, {(1) = ` 200 x 2 `*Matrix, (2) = `Data Type: `*float[8], (3) = `Storage: `*rectangular, (4) = `Order: `*Fortran_order})

(5)

M(1..5,1..2);

Matrix(5, 2, {(1, 1) = 0., (1, 2) = 1.00544209665488, (2, 1) = 0.525760502512563e-2, (2, 2) = 1.00531367935084, (3, 1) = 0.983221904522613e-2, (3, 2) = 1.00524476661193, (4, 1) = 0.149768509547739e-1, (4, 2) = 1.00519694709506, (5, 1) = 0.201555848241206e-1, (5, 2) = 1.00516850310343})

(6)

for i to 200 do
X||i := M(i,1);Y||i:=M(i,2);od;

HFloat(0.0)

 

HFloat(1.0054420966548754)

 

HFloat(0.005257605025125628)

 

HFloat(1.005313679350836)

 

HFloat(0.009832219045226132)

 

HFloat(1.0052447666119306)

 

HFloat(0.01497685095477387)

 

HFloat(1.0051969470950588)

 

HFloat(0.020155584824120606)

 

HFloat(1.0051685031034252)

 

HFloat(0.025309705075376884)

 

HFloat(1.0051519809528207)

 

HFloat(0.030088234321608037)

 

HFloat(1.0051429646370702)

 

HFloat(0.03503612457286432)

 

HFloat(1.005137449011675)

 

HFloat(0.04015323974874372)

 

HFloat(1.005134170141501)

 

HFloat(0.04525394427135678)

 

HFloat(1.0051323235512175)

 

HFloat(0.050500645829145735)

 

HFloat(1.005131261067313)

 

HFloat(0.05512194341708543)

 

HFloat(1.005130719877206)

 

HFloat(0.06032442994974875)

 

HFloat(1.0051303453485858)

 

HFloat(0.0655482783919598)

 

HFloat(1.0051300820437188)

 

HFloat(0.07058242432160805)

 

HFloat(1.0051298442180068)

 

HFloat(0.07515391110552763)

 

HFloat(1.0051295854399453)

 

HFloat(0.08058985105527638)

 

HFloat(1.0051291645879956)

 

HFloat(0.08519480522613065)

 

HFloat(1.0051286662079586)

 

HFloat(0.09055146165829146)

 

HFloat(1.0051278696661838)

 

HFloat(0.09529301025125628)

 

HFloat(1.005126926199813)

 

HFloat(0.10049524055276382)

 

HFloat(1.0051255863130446)

 

HFloat(0.10544899402010051)

 

HFloat(1.0051239719350966)

 

HFloat(0.11061771608040202)

 

HFloat(1.0051218938794964)

 

HFloat(0.11536421643216081)

 

HFloat(1.0051195986698855)

 

HFloat(0.12048395829145729)

 

HFloat(1.0051166762056676)

 

HFloat(0.12580193120603014)

 

HFloat(1.005113119600027)

 

HFloat(0.13043124226130653)

 

HFloat(1.0051095706328173)

 

HFloat(0.13543102502512563)

 

HFloat(1.0051052467852606)

 

HFloat(0.14059628984924621)

 

HFloat(1.0051002301125815)

 

HFloat(0.14564949376884423)

 

HFloat(1.0050947712106035)

 

HFloat(0.1505387283919598)

 

HFloat(1.0050889645007863)

 

HFloat(0.15596738984924624)

 

HFloat(1.0050819090048029)

 

HFloat(0.16084528361809045)

 

HFloat(1.0050750237196298)

 

HFloat(0.16605347638190956)

 

HFloat(1.0050671053553928)

 

HFloat(0.17077287311557787)

 

HFloat(1.0050594295490034)

 

HFloat(0.17593242030150755)

 

HFloat(1.005050500926828)

 

HFloat(0.18078715211055274)

 

HFloat(1.0050415964935862)

 

HFloat(0.18586174567839198)

 

HFloat(1.0050317780888274)

 

HFloat(0.19082308844221105)

 

HFloat(1.0050216860556584)

 

HFloat(0.19601715452261306)

 

HFloat(1.005010612685916)

 

HFloat(0.2010196574874372)

 

HFloat(1.0049994709394743)

 

HFloat(0.20613543929648243)

 

HFloat(1.0049876085677374)

 

HFloat(0.21120885984924626)

 

HFloat(1.0049753926185856)

 

HFloat(0.2158708064321608)

 

HFloat(1.0049637847322237)

 

HFloat(0.22121392331658293)

 

HFloat(1.0049500469843557)

 

HFloat(0.22599287075376884)

 

HFloat(1.0049373824178167)

 

HFloat(0.23108822547738694)

 

HFloat(1.004923503126965)

 

HFloat(0.23596513010050252)

 

HFloat(1.0049098704131825)

 

HFloat(0.24138030592964826)

 

HFloat(1.0048943517388513)

 

HFloat(0.24606945030150754)

 

HFloat(1.004880604308175)

 

HFloat(0.2513916711055276)

 

HFloat(1.0048646697368173)

 

HFloat(0.2562422975879397)

 

HFloat(1.0048498552014418)

 

HFloat(0.2615481206532663)

 

HFloat(1.0048333480625111)

 

HFloat(0.26612614864321604)

 

HFloat(1.0048188641259044)

 

HFloat(0.27133998814070354)

 

HFloat(1.0048021110729248)

 

HFloat(0.2763762996984925)

 

HFloat(1.0047856820024907)

 

HFloat(0.28140932115577894)

 

HFloat(1.00476903545311)

 

HFloat(0.2864238270351759)

 

HFloat(1.0047522363264243)

 

HFloat(0.2912411973366834)

 

HFloat(1.0047359083463425)

 

HFloat(0.2964489022110553)

 

HFloat(1.004718061378617)

 

HFloat(0.3014122225628141)

 

HFloat(1.0047008741895227)

 

HFloat(0.30663588351758797)

 

HFloat(1.0046826104334023)

 

HFloat(0.3113645545728643)

 

HFloat(1.0046659326871892)

 

HFloat(0.31659062130653265)

 

HFloat(1.0046473517637455)

 

HFloat(0.3215962825628141)

 

HFloat(1.004629418177737)

 

HFloat(0.3265897598994975)

 

HFloat(1.0046114051786545)

 

HFloat(0.3318054663316583)

 

HFloat(1.0045924693333699)

 

HFloat(0.33660932236180907)

 

HFloat(1.0045749277782803)

 

HFloat(0.341529128040201)

 

HFloat(1.004556870662758)

 

HFloat(0.3469611780904523)

 

HFloat(1.0045368344678176)

 

HFloat(0.3518794544723618)

 

HFloat(1.0045186118846459)

 

HFloat(0.35690931331658293)

 

HFloat(1.004499903564167)

 

HFloat(0.36202455020100505)

 

HFloat(1.0044808102126461)

 

HFloat(0.36672644829145734)

 

HFloat(1.0044632060151408)

 

HFloat(0.37173851939698493)

 

HFloat(1.0044443902550944)

 

HFloat(0.3767124382914573)

 

HFloat(1.0044256726194614)

 

HFloat(0.3820329854271357)

 

HFloat(1.0044056076092809)

 

HFloat(0.3867281377889447)

 

HFloat(1.0043878696723096)

 

HFloat(0.3921453689447236)

 

HFloat(1.0043673733938376)

 

HFloat(0.39703400241206027)

 

HFloat(1.0043488544640016)

 

HFloat(0.40187104969849247)

 

HFloat(1.0043305146234691)

 

HFloat(0.40707242944723615)

 

HFloat(1.0043107802826652)

 

HFloat(0.41229484984924625)

 

HFloat(1.0042909575183856)

 

HFloat(0.4170464791457286)

 

HFloat(1.0042729184555748)

 

HFloat(0.42209249839195984)

 

HFloat(1.0042537624805554)

 

HFloat(0.42701692)

 

HFloat(1.0042350726598528)

 

HFloat(0.43235504497487437)

 

HFloat(1.0042148220009375)

 

HFloat(0.4369740072361809)

 

HFloat(1.0041973106582673)

 

HFloat(0.4422790533165829)

 

HFloat(1.0041772146437509)

 

HFloat(0.4472660755276382)

 

HFloat(1.0041583426598888)

 

HFloat(0.45220492854271355)

 

HFloat(1.0041396745179927)

 

HFloat(0.4571477104522613)

 

HFloat(1.0041210158731302)

 

HFloat(0.46218903512562814)

 

HFloat(1.0041020131479375)

 

HFloat(0.4675327548241206)

 

HFloat(1.0040819043859337)

 

HFloat(0.4724324225125628)

 

HFloat(1.0040634997952242)

 

HFloat(0.4772690236683417)

 

HFloat(1.0040453655117172)

 

HFloat(0.48243927070351755)

 

HFloat(1.0040260193227308)

 

HFloat(0.4875982625628141)

 

HFloat(1.0040067578208645)

 

HFloat(0.49222876412060307)

 

HFloat(1.0039895075566618)

 

HFloat(0.4977139271356784)

 

HFloat(1.0039691221881761)

 

HFloat(0.5023036571859296)

 

HFloat(1.0039521070141866)

 

HFloat(0.5076718620100502)

 

HFloat(1.0039322567507165)

 

HFloat(0.5127952934673367)

 

HFloat(1.0039133645623128)

 

HFloat(0.5173699074874372)

 

HFloat(1.0038965411990497)

 

HFloat(0.522514539396985)

 

HFloat(1.0038776738747603)

 

HFloat(0.5276932732663316)

 

HFloat(1.0038587388970672)

 

HFloat(0.5328473935175879)

 

HFloat(1.0038399525553994)

 

HFloat(0.537625922763819)

 

HFloat(1.0038225886635597)

 

HFloat(0.5425738130150755)

 

HFloat(1.0038046646753083)

 

HFloat(0.5476909281909548)

 

HFloat(1.0037861879852061)

 

HFloat(0.5527916327135678)

 

HFloat(1.0037678326880282)

 

HFloat(0.5580383342713567)

 

HFloat(1.0037490178268218)

 

HFloat(0.5626596318592965)

 

HFloat(1.0037325018059735)

 

HFloat(0.5678621183919598)

 

HFloat(1.0037139724523647)

 

HFloat(0.5730859668341709)

 

HFloat(1.0036954358553982)

 

HFloat(0.5781201127638191)

 

HFloat(1.0036776384765362)

 

HFloat(0.5826915995477386)

 

HFloat(1.003661533539099)

 

HFloat(0.5881275394974874)

 

HFloat(1.0036424542725773)

 

HFloat(0.5927324936683417)

 

HFloat(1.0036263525784546)

 

HFloat(0.5980891501005026)

 

HFloat(1.003607693434909)

 

HFloat(0.6028306986934674)

 

HFloat(1.003591241089885)

 

HFloat(0.6080329289949749)

 

HFloat(1.0035732600858458)

 

HFloat(0.6129866824623116)

 

HFloat(1.0035562062727472)

 

HFloat(0.6181554045226131)

 

HFloat(1.003538483931285)

 

HFloat(0.6229019048743719)

 

HFloat(1.0035222739753928)

 

HFloat(0.6280216467336683)

 

HFloat(1.0035048591224331)

 

HFloat(0.6333396196482413)

 

HFloat(1.0034868470074023)

 

HFloat(0.6379689307035177)

 

HFloat(1.0034712315665224)

 

HFloat(0.6429687134673366)

 

HFloat(1.0034544337809705)

 

HFloat(0.6481339782914572)

 

HFloat(1.0034371536756017)

 

HFloat(0.6531871822110553)

 

HFloat(1.0034203211045134)

 

HFloat(0.6580764168341708)

 

HFloat(1.0034041032828511)

 

HFloat(0.6635050782914573)

 

HFloat(1.003386175324786)

 

HFloat(0.6683829720603015)

 

HFloat(1.0033701374452715)

 

HFloat(0.6735911648241206)

 

HFloat(1.003353088084036)

 

HFloat(0.6783105615577889)

 

HFloat(1.0033377053539734)

 

HFloat(0.6834701087437185)

 

HFloat(1.0033209604085522)

 

HFloat(0.6883248405527639)

 

HFloat(1.003305273861746)

 

HFloat(0.693399434120603)

 

HFloat(1.0032889485919154)

 

HFloat(0.6983607768844221)

 

HFloat(1.0032730585148018)

 

HFloat(0.7035548429648242)

 

HFloat(1.0032564981398215)

 

HFloat(0.7085573459296483)

 

HFloat(1.00324062110065)

 

HFloat(0.7136731277386934)

 

HFloat(1.003224458145241)

 

HFloat(0.7187465482914573)

 

HFloat(1.0032085024920119)

 

HFloat(0.7234084948743718)

 

HFloat(1.0031939053509313)

 

HFloat(0.7287516117587939)

 

HFloat(1.0031772512136612)

 

HFloat(0.73353055919598)

 

HFloat(1.0031624240957233)

 

HFloat(0.738625913919598)

 

HFloat(1.0031466864900036)

 

HFloat(0.7435028185427136)

 

HFloat(1.0031316923116675)

 

HFloat(0.7489179943718592)

 

HFloat(1.003115121822722)

 

HFloat(0.7536071387437185)

 

HFloat(1.0031008397157941)

 

HFloat(0.7589293595477387)

 

HFloat(1.0030847042804834)

 

HFloat(0.7637799860301507)

 

HFloat(1.0030700677932358)

 

HFloat(0.7690858090954773)

 

HFloat(1.003054133192505)

 

HFloat(0.7736638370854272)

 

HFloat(1.0030404475112604)

 

HFloat(0.7788776765829145)

 

HFloat(1.0030249322378038)

 

HFloat(0.7839139881407036)

 

HFloat(1.0030100169873744)

 

HFloat(0.78894700959799)

 

HFloat(1.0029951817222782)

 

HFloat(0.7939615154773869)

 

HFloat(1.0029804706774554)

 

HFloat(0.7987788857788946)

 

HFloat(1.0029664032596475)

 

HFloat(0.8039865906532664)

 

HFloat(1.0029512677707284)

 

HFloat(0.8089499110050251)

 

HFloat(1.0029369117391516)

 

HFloat(0.814173571959799)

 

HFloat(1.002921875396198)

 

HFloat(0.8189022430150754)

 

HFloat(1.0029083279859694)

 

HFloat(0.8241283097487437)

 

HFloat(1.002893426195026)

 

HFloat(0.8291339710050252)

 

HFloat(1.002879222188298)

 

HFloat(0.8341274483417086)

 

HFloat(1.0028651200993743)

 

HFloat(0.8393431547738693)

 

HFloat(1.0028504619865692)

 

HFloat(0.8441470108040201)

 

HFloat(1.002837025804598)

 

HFloat(0.8490668164824121)

 

HFloat(1.0028233291743947)

 

HFloat(0.8544988665326633)

 

HFloat(1.002808281259519)

 

HFloat(0.8594171429145729)

 

HFloat(1.0027947240646873)

 

HFloat(0.864447001758794)

 

HFloat(1.0027809253537134)

 

HFloat(0.8695622386432161)

 

HFloat(1.0027669606760918)

 

HFloat(0.8742641367336684)

 

HFloat(1.0027541849061654)

 

HFloat(0.879276207839196)

 

HFloat(1.0027406299077557)

 

HFloat(0.8842501267336684)

 

HFloat(1.0027272426873928)

 

HFloat(0.8895706738693467)

 

HFloat(1.0027129934724837)

 

HFloat(0.8942658262311558)

 

HFloat(1.0027004798325778)

 

HFloat(0.8996830573869348)

 

HFloat(1.0026861120828823)

 

HFloat(0.9045716908542714)

 

HFloat(1.0026732107763519)

 

HFloat(0.9094087381407036)

 

HFloat(1.0026605055695446)

 

HFloat(0.9146101178894473)

 

HFloat(1.0026469096715918)

 

HFloat(0.9198325382914573)

 

HFloat(1.0026333275898276)

 

HFloat(0.9245841675879397)

 

HFloat(1.0026210295644549)

 

HFloat(0.9296301868341709)

 

HFloat(1.0026080315809114)

 

HFloat(0.934554608442211)

 

HFloat(1.0025954081113946)

 

HFloat(0.9398927334170855)

 

HFloat(1.0025817922292892)

 

HFloat(0.9445116956783919)

 

HFloat(1.0025700676286355)

 

HFloat(0.9498167417587939)

 

HFloat(1.0025566663750014)

 

HFloat(0.9548037639698493)

 

HFloat(1.002544131469883)

 

HFloat(0.9597426169849247)

 

HFloat(1.0025317775236526)

 

HFloat(0.9646853988944724)

 

HFloat(1.0025194731576277)

 

HFloat(0.9697267235678392)

 

HFloat(1.0025069844366914)

 

HFloat(0.9750704432663316)

 

HFloat(1.0024938135034942)

 

HFloat(0.9799701109547739)

 

HFloat(1.0024817972802385)

 

HFloat(0.9848067121105528)

 

HFloat(1.0024699919862237)

 

HFloat(0.9899769591457287)

 

HFloat(1.002457433860754)

 

HFloat(0.995135951005025)

 

HFloat(1.00244496616984)

 

HFloat(1.0)

 

HFloat(1.0024332687275255)

(7)

 

``


Download loop.mw


restart:
f:=simplify(cosh(t)/(cosh((17/15)*t)+cosh(t)));

(1/2)*cosh(t)/(cosh((1/15)*t)*(32768*cosh((1/15)*t)^16-131072*cosh((1/15)*t)^14+212992*cosh((1/15)*t)^12-180224*cosh((1/15)*t)^10+84480*cosh((1/15)*t)^8-21504*cosh((1/15)*t)^6+2688*cosh((1/15)*t)^4-128*cosh((1/15)*t)^2+1))

(1)

evalf(Int(f, t = 0 .. infinity));

 

 

evalf(int(f, t = 0 .. infinity));

 

 

5.210624833

 

5.210624833

(2)

 

``


Download int.mw

restart:

sort(x+y+z, order = tdeg(z, y, x));

z+y+x

(1)

sort( x+y+z, order = plex(z, y, x));

z+y+x

(2)

 

``

 

Download one_way.mw

 


``

restart;

with(Physics):

        

Setup(mathematicalnotation = true):

Setup(quantumop = {Q,P}, algebrarule = {%AntiCommutator(Q[i], P[k]) = 2*KroneckerDelta[i, k], %Commutator(Q[j], P[k]) = 2*I*(add(LeviCivita[j, k, l]*Q[l], l = 1 .. 3))}):

`* Partial match of  'quantumop' against keyword 'quantumoperators'`

 

`* Partial match of  'algebrarule' against keyword 'algebrarules'`

 

Error, (in Physics:-Setup) multiple definition of algebra rule; received values for %Commutator(Q[j], P[k]) are {rule, 2*Physics:-KroneckerDelta[i, k]}

 

Commutator(Q[1], P[2]);

-2*Physics:-`*`(P[2], Q[1])

(1)

AntiCommutator(Q[1], P[2]);

0

(2)

AntiCommutator(Q[1], P[1]);

2

(3)

Commutator(Q[1], P[1]);

2-2*Physics:-`*`(P[1], Q[1])

(4)

``

``


Download corrected.mw

from maple help page :

userinfo - print useful information to the user

Calling Sequence
userinfo(lev, fn, e1, e2 ... );

• The user must assign a non-negative integer to some of the entries in the global table infolevel before invoking the procedure. If the entry infolevel[all] is a non-negative integer then every userinfo call will print if its level is less than or equal to infolevel[all] .

• Throughout the Maple library userinfo statements have been used with the following conventions:
Level 1: reserved for information that the user must be told.
Level 2,3: general information, including technique or algorithm being used.
Level 4,5: more detailed information about how the problem is being solved


The item infolevel[hints] is initialized to a value 1. Maple sometimes returns unevaluated answers when it does not have enough information to produce an explicit answer (because, for example, such an answer would not be correct over all complex numbers). This facility is intended to report hints as to which further information, given through assume(), would enable Maple return an explicit answer.

actucallyA is, A=0.5+sqrt(3)/2*I .and all (x+y) can simplify from Numerator and denominator of your A and actually A is independent of x and y.

restart

A := (1/2)*(-x-y+sqrt(-3*x^2-6*x*y-3*y^2))/(x+y);

A := (1/2)*(-x-y+(-3*(x+y)^2)^(1/2))/(x+y)

 

x := 10+I;

x := 10+I

y := 10-I

 

A;

-1/2+(1/40)*(-1200)^(1/2)

-.5000000000+.8660254038*I

 

``

x := 10+10*I;

x := 10+10*I

y := 10-I
(10/481-(9/962)*I)*((-20-9*I)+(-957-1080*I)^(1/2))
-.5000000000-.8660254038*I

 

``

x := 10+10*sqrt(I); 1; y := 10-I; 1; A; 1; evalf(%)

x := 10+5*2^(1/2)+(5*I)*2^(1/2)

y := 10-I
(1/2)*((-20+I)-5*2^(1/2)-(5*I)*2^(1/2)+(-3*(20-I+5*2^(1/2)+(5*I)*2^(1/2))^2)^(1/2))/(20-I+5*2^(1/2)+(5*I)*2^(1/2))
-.5000000000-.8660254035*I

 

``


Download correct.mw

in printf u should write everyhting in string , "Ghana Chocolates" . and make local varibales in the procedure. good luck

restart; printf("Factory Simulation: %s\n\n", "Ghana Chocolates"); printf("Chocolate Factory Simulation Project .\n\n"); printf("%5a  %10a  %10a  %10a  %10a  %10a   \n", W, O(t, t+1), B(t), T(t), F(t), R(t)); printf(" ---------------------------------------------------------------------------\n"); initialise := proc (n) local i, t, a, T, R, F, B, O, Q; T := proc (t) options operator, arrow; 250 end proc; R := proc (t) options operator, arrow; 150 end proc; F := proc (t) options operator, arrow; 250 end proc; B := proc (t) options operator, arrow; 50 end proc; for i to n do t := i; if B(t) < F(t) then Ds(t, t+1) := B(t) else Ds(t, t+1) := F(t) end if; M(t, t+1) := 50; O(t, t+1) := 50; P(t, t+1) := 50; if t = 2 then O(t, t+1) := 100 elif t = 3 then O(t, t+1) := 0 end if; P(t, t+1) := T(t)-F(t)+Ds(t, t+1); if R(t) < P(t, t+1) then P(t, t+1) := R(t) elif R(t) < 0 then P(t, t+1) := 0 end if; R(t+1) := R(t)+M(t, t+1)-P(t, t+1); F(t+1) := F(t)+P(t, t+1)-Ds(t, t+1); B(t+1) := B(t)+O(t, t+1)-Ds(t, t+1); R(t) := R(t+1); F(t) := F(t+1); B(t) := B(t+1); for a to t do Q(t, t+1) := O(t, t+1)+O(t-t+a, t-t+a+1) end do; T(t+1) := (t+1)*Q(t, t+1)/t; printf("%5a  %10a  %10a  %10a  %10a  %10a   \n", i, evalf[3](O(t, t+1)), evalf[3](B(t)), evalf[3](T(t)), evalf[3](F(t)), evalf[3](R(t))) end do; printf(" ---------------------------------------------------------------------------\n\n\n"); printf("%5a  %10a  %10a  %10a     \n", W, M(t, t+1), P(t, t+1), Ds(t, t+1)); printf(" ---------------------------------------------------------------------------\n") end proc; initialise(10)

Factory Simulation: Ghana Chocolates


Chocolate Factory Simulation Project .

    W    O(t,t+1)        B(t)        T(t)        F(t)        R(t)   
 ---------------------------------------------------------------------------
    1         50.         50.        250.        250.        150.   
    2        100.        100.        200.        200.        200.   
    3          0.          0.        300.        300.         50.   
    4         50.         50.          0.          0.        400.   
    5         50.        100.        125.        125.        325.   
    6         50.         50.        120.        120.        280.   
    7         50.         50.        117.        117.        283.   
    8         50.         50.        114.        114.        286.   
    9         50.         50.        112.        112.        288.   
   10         50.         50.        111.        111.        289.   
 ---------------------------------------------------------------------------


    W          50      875/18          50     
 ---------------------------------------------------------------------------

 

``

``


Download suppress_warnins.mw

i write a procedure , which M is input for the procedure.


restart:

mat:=proc(M) local A,i,j;A:=Matrix(M,M):
for i to M do
for j to M do
A(i,j):=(psi||1||(i-1))((2*j-1)/(2*m));
od;od;end proc;

proc (M) local A, i, j; A := Matrix(M, M); for i to M do for j to M do A(i, j) := (psi || 1 || (i-1))((1/2)*(2*j-1)/m) end do end do end proc

(1)

mat(3);

Matrix(3, 3, {(1, 1) = psi10((1/2)/m), (1, 2) = psi10((3/2)/m), (1, 3) = psi10((5/2)/m), (2, 1) = psi11((1/2)/m), (2, 2) = psi11((3/2)/m), (2, 3) = psi11((5/2)/m), (3, 1) = psi12((1/2)/m), (3, 2) = psi12((3/2)/m), (3, 3) = psi12((5/2)/m)})

(2)

 

NULL



Download Mat.mw

http://www.mapleprimes.com/questions/201345-Geom3d-Seq-Of-Point--In-R3

NULL

restart:with(plots):

 

Tab := [[0, 0, 0], [1/5, 0, 0], [2/5, 0, 0], [0, 1/5, 0], [1/5, 1/5, 0], [2/5, 1/5, 0], [0, 2/5, 0], [1/5, 2/5, 0], [2/5, 2/5, 0], [0, 0, 1/5], [1/5, 0, 1/5], [2/5, 0, 1/5], [0, 1/5, 1/5], [1/5, 1/5, 1/5], [2/5, 1/5, 1/5], [0, 2/5, 1/5], [1/5, 2/5, 1/5], [2/5, 2/5, 1/5], [0, 0, 2/5], [1/5, 0, 2/5], [2/5, 0, 2/5], [0, 1/5, 2/5], [1/5, 1/5, 2/5], [2/5, 1/5, 2/5], [0, 2/5, 2/5], [1/5, 2/5, 2/5], [2/5, 2/5, 2/5]];

[[0, 0, 0], [1/5, 0, 0], [2/5, 0, 0], [0, 1/5, 0], [1/5, 1/5, 0], [2/5, 1/5, 0], [0, 2/5, 0], [1/5, 2/5, 0], [2/5, 2/5, 0], [0, 0, 1/5], [1/5, 0, 1/5], [2/5, 0, 1/5], [0, 1/5, 1/5], [1/5, 1/5, 1/5], [2/5, 1/5, 1/5], [0, 2/5, 1/5], [1/5, 2/5, 1/5], [2/5, 2/5, 1/5], [0, 0, 2/5], [1/5, 0, 2/5], [2/5, 0, 2/5], [0, 1/5, 2/5], [1/5, 1/5, 2/5], [2/5, 1/5, 2/5], [0, 2/5, 2/5], [1/5, 2/5, 2/5], [2/5, 2/5, 2/5]]

(1)

pointplot3d(Tab,color = magenta,axes = normal, symbol = box);

 

 

NULL


Download plot3d.mw


``

restart:with(plots):

x := [seq]( (1/5)*i,i=0..12);  #  x[i] the x-coordinate

y := [seq]( (1/5)*j,j=0..12); # y[j] the y-coordinate

t := [seq]( (1/5)*k,k=0..12);  #  t[k] the t-coordinate

 

[0, 1/5, 2/5, 3/5, 4/5, 1, 6/5, 7/5, 8/5, 9/5, 2, 11/5, 12/5]

 

[0, 1/5, 2/5, 3/5, 4/5, 1, 6/5, 7/5, 8/5, 9/5, 2, 11/5, 12/5]

 

[0, 1/5, 2/5, 3/5, 4/5, 1, 6/5, 7/5, 8/5, 9/5, 2, 11/5, 12/5]

(1)

listplot3d([x,y,t]);

 

pointplot3d([seq]([op(i,x),op(i,y),op(i,t)],i=1..nops(x)),color = magenta,axes = normal, symbol = box);

 

 

``


Download plot.mw

 

 

restart

Fun := proc (x) options operator, arrow; x^2 end proc;

Fun := proc (x) options operator, arrow; x^2 end proc

 

A := ([seq])(i, i = 1 .. 4);

A := [1, 2, 3, 4]

 

map(Fun, A); 1; op(%)

[1, 4, 9, 16]

1, 4, 9, 16

 

``


Download map.mw


it is for 15 number of data.

maple.mws   

testfile.txt

az u can see from the wroksheet i uploaded, u can solve your problem without your boundary conditions, but with them u can not .
i changed your way of typing , and also changed theta[p] to sigma .
u have write G(10)=-f(10) while you have note assigned f(10):=0 , so never use this . also u have written L:=[0.2]; and i do not know where u have used it in your equations.

dsolve without your boundary take alot of memory and time, so i terminated the process. but your problem,is with your boundary conditions,and actually i do not know ho to correct them. maybe preben alsholm can help. good luck

 

NULL

restart:

fixedparameter := {M = .5, B = .5, theta[r] = -10, L0 = 1, s = .1, Pr = 1}:

Eq1 := eval((1-theta(eta)/theta[r])*(diff(f(eta), eta, eta, eta))+(diff(f(eta), eta, eta))*(diff(theta(eta), eta))/theta[r]+(1-theta(eta)/theta[r])^2*(f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2-M*(diff(f(eta), eta))+B*H(eta)*(F(eta)-(diff(f(eta), eta)))),fixedparameter);

(1+(1/10)*theta(eta))*(diff(diff(diff(f(eta), eta), eta), eta))-(1/10)*(diff(diff(f(eta), eta), eta))*(diff(theta(eta), eta))+(1+(1/10)*theta(eta))^2*(f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2-.5*(diff(f(eta), eta))+.5*H(eta)*(F(eta)-(diff(f(eta), eta))))

(1)

Eq2 := eval(G(eta)*(diff(F(eta), eta))+F(eta)^2+B*(F(eta)-(diff(f(eta), eta))) ,fixedparameter);

G(eta)*(diff(F(eta), eta))+F(eta)^2+.5*F(eta)-.5*(diff(f(eta), eta))

(2)

Eq3 := eval(G(eta)*(diff(G(eta), eta))+B*(f(eta)+G(eta)) ,fixedparameter);

G(eta)*(diff(G(eta), eta))+.5*f(eta)+.5*G(eta)

(3)

Eq4 := eval(G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta),fixedparameter);

G(eta)*(diff(H(eta), eta))+H(eta)*(diff(G(eta), eta))+F(eta)*H(eta)

(4)

Eq5 := eval((1+s*theta(eta))*(diff(theta(eta), eta, eta))+(diff(theta(eta), eta))^2*s+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta))+(2/3)*B*H(eta)*(sgima(eta)-theta(eta)),fixedparameter);

(1+.1*theta(eta))*(diff(diff(theta(eta), eta), eta))+.1*(diff(theta(eta), eta))^2+f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)+.3333333333*H(eta)*(sgima(eta)-theta(eta))

(5)

Eq6 := eval(2*F(eta)*sgima(eta)+G(eta)*(diff(sgima(eta), eta))+L0*B*(sgima(eta)-theta(eta)) ,fixedparameter);

2*F(eta)*sgima(eta)+G(eta)*(diff(sgima(eta), eta))+.5*sgima(eta)-.5*theta(eta)

(6)

bcs := {f(0) = 0, (D(f))(0) = 1, (D(f))(10) = 0,F(10) = 0,G(10) = 0,H(10) = n,theta(10) = 0,sgima(10) = 0};

{F(10) = 0, G(10) = 0, H(10) = n, f(0) = 0, sgima(10) = 0, theta(10) = 0, (D(f))(0) = 1, (D(f))(10) = 0}

(7)

L := [0.2]:

 

dsolve({seq(Eq||i,i=1..6)},bcs);dsolve({seq(Eq||i,i=1..6)},bcs,numeric);

Error, (in dsolve) too many arguments; some or all of the following are wrong: [{F(eta), G(eta), H(eta), f(eta), sgima(eta), theta(eta)}, {F(10) = 0, G(10) = 0, H(10) = n, f(0) = 0, sgima(10) = 0, theta(10) = 0, (D(f))(0) = 1, (D(f))(10) = 0}]

 

Error, (in dsolve/numeric/process_input) invalid argument: {F(10) = 0, G(10) = 0, H(10) = n, f(0) = 0, sgima(10) = 0, theta(10) = 0, (D(f))(0) = 1, (D(f))(10) = 0}

 

dsolve({seq(Eq||i,i=1..6)});

#for k to 1 do R := dsolve(eval({Eq10, Eq11, Eq4, Eq7, Eq8, Eq9, bcs1, bcs2, bcs3, bcs4, bcs5, bcs6}, n = L[k]), [f(eta), F(eta), G(eta), H(eta), theta(eta), sgima(eta)], numeric, output = listprocedure); Y || k := rhs(R[5]); YP || k := rhs(R[6]); YJ || k := rhs(R[7]); YS || k := rhs(R[2]) end do

 

NULL

 

Download dsolve.mw

4 5 6 7 8 9 Page 6 of 9