mehdi jafari

764 Reputation

13 Badges

11 years, 229 days

MaplePrimes Activity


These are replies submitted by mehdi jafari

could you please explain more? 

@Mac Dude the error is in maple 18.01,

@Carl Love at first this error was emerged :

interface(complexunit= j);
Error, (in interface) complexunit not a valid property name

in maple help page we have :

method=float
Compute the determinant of the n x n Matrix A which has numerical entries or complex numerical entries by using Gaussian elimination.

but without using this option,we can evaluate determinant very efficiently. thus is what the benefit of this option ?!

restart:

interface(complexunit= j);

Error, (in interface) complexunit not a valid property name

 

V:= < 150*d, 0 >:

A:= < 13-I*14, -(12-I*16); 27+I*16, -(26+I*13) >:

LinearAlgebra:-Determinant(A,method=float);

 

60.0000000000001-45.0000000000000*I

(1)

 

 

Download determinant.mw

why u avoid uploading your worksheet here ? 

@Chia u can also see ?convert/POLYGONS , so that use this :


restart:

with(plottools):

with(plots):

display(cylinder([1, 1, 1], 1, 3), orientation = [45, 70], scaling = constrained, grid = [2, 2, 2]);

 

 

op(op(1,%)):

p2 := op(op(convert(%%, POLYGONS)));

[[2., 1., HFloat(1.0)], [1.965925826, 1.258819045, HFloat(1.0)], [1.866025404, 1.500000000, HFloat(1.0)], [1.707106781, 1.707106781, HFloat(1.0)], [1.500000000, 1.866025404, HFloat(1.0)], [1.258819045, 1.965925826, HFloat(1.0)], [.9999999998, 2., HFloat(1.0)], [.7411809545, 1.965925826, HFloat(1.0)], [.4999999995, 1.866025404, HFloat(1.0)], [.2928932182, 1.707106781, HFloat(1.0)], [.1339745957, 1.499999999, HFloat(1.0)], [0.340741734e-1, 1.258819044, HFloat(1.0)], [0., .9999999986, HFloat(1.0)], [0.340741741e-1, .7411809533, HFloat(1.0)], [.1339745971, .4999999984, HFloat(1.0)], [.2928932202, .2928932174, HFloat(1.0)], [.5000000019, .1339745951, HFloat(1.0)], [.7411809572, 0.340741731e-1, HFloat(1.0)], [1.000000003, 0., HFloat(1.0)], [1.258819048, 0.340741744e-1, HFloat(1.0)], [1.500000003, .1339745977, HFloat(1.0)], [1.707106784, .2928932211, HFloat(1.0)], [1.866025406, .5000000030, HFloat(1.0)], [1.965925827, .7411809584, HFloat(1.0)], [2., 1.000000004, HFloat(1.0)], [2., 1., HFloat(1.0)]], [[2., 1., HFloat(4.0)], [1.965925826, 1.258819045, HFloat(4.0)], [1.866025404, 1.500000000, HFloat(4.0)], [1.707106781, 1.707106781, HFloat(4.0)], [1.500000000, 1.866025404, HFloat(4.0)], [1.258819045, 1.965925826, HFloat(4.0)], [.9999999998, 2., HFloat(4.0)], [.7411809545, 1.965925826, HFloat(4.0)], [.4999999995, 1.866025404, HFloat(4.0)], [.2928932182, 1.707106781, HFloat(4.0)], [.1339745957, 1.499999999, HFloat(4.0)], [0.340741734e-1, 1.258819044, HFloat(4.0)], [0., .9999999986, HFloat(4.0)], [0.340741741e-1, .7411809533, HFloat(4.0)], [.1339745971, .4999999984, HFloat(4.0)], [.2928932202, .2928932174, HFloat(4.0)], [.5000000019, .1339745951, HFloat(4.0)], [.7411809572, 0.340741731e-1, HFloat(4.0)], [1.000000003, 0., HFloat(4.0)], [1.258819048, 0.340741744e-1, HFloat(4.0)], [1.500000003, .1339745977, HFloat(4.0)], [1.707106784, .2928932211, HFloat(4.0)], [1.866025406, .5000000030, HFloat(4.0)], [1.965925827, .7411809584, HFloat(4.0)], [2., 1.000000004, HFloat(4.0)], [2., 1., HFloat(4.0)]], [[2., 1., HFloat(1.0)], [2., 1., HFloat(4.0)], [1.965925826, 1.258819045, HFloat(4.0)], [1.965925826, 1.258819045, HFloat(1.0)]], [[1.965925826, 1.258819045, HFloat(1.0)], [1.965925826, 1.258819045, HFloat(4.0)], [1.866025404, 1.500000000, HFloat(4.0)], [1.866025404, 1.500000000, HFloat(1.0)]], [[1.866025404, 1.500000000, HFloat(1.0)], [1.866025404, 1.500000000, HFloat(4.0)], [1.707106781, 1.707106781, HFloat(4.0)], [1.707106781, 1.707106781, HFloat(1.0)]], [[1.707106781, 1.707106781, HFloat(1.0)], [1.707106781, 1.707106781, HFloat(4.0)], [1.500000000, 1.866025404, HFloat(4.0)], [1.500000000, 1.866025404, HFloat(1.0)]], [[1.500000000, 1.866025404, HFloat(1.0)], [1.500000000, 1.866025404, HFloat(4.0)], [1.258819045, 1.965925826, HFloat(4.0)], [1.258819045, 1.965925826, HFloat(1.0)]], [[1.258819045, 1.965925826, HFloat(1.0)], [1.258819045, 1.965925826, HFloat(4.0)], [.9999999998, 2., HFloat(4.0)], [.9999999998, 2., HFloat(1.0)]], [[.9999999998, 2., HFloat(1.0)], [.9999999998, 2., HFloat(4.0)], [.7411809545, 1.965925826, HFloat(4.0)], [.7411809545, 1.965925826, HFloat(1.0)]], [[.7411809545, 1.965925826, HFloat(1.0)], [.7411809545, 1.965925826, HFloat(4.0)], [.4999999995, 1.866025404, HFloat(4.0)], [.4999999995, 1.866025404, HFloat(1.0)]], [[.4999999995, 1.866025404, HFloat(1.0)], [.4999999995, 1.866025404, HFloat(4.0)], [.2928932182, 1.707106781, HFloat(4.0)], [.2928932182, 1.707106781, HFloat(1.0)]], [[.2928932182, 1.707106781, HFloat(1.0)], [.2928932182, 1.707106781, HFloat(4.0)], [.1339745957, 1.499999999, HFloat(4.0)], [.1339745957, 1.499999999, HFloat(1.0)]], [[.1339745957, 1.499999999, HFloat(1.0)], [.1339745957, 1.499999999, HFloat(4.0)], [0.340741734e-1, 1.258819044, HFloat(4.0)], [0.340741734e-1, 1.258819044, HFloat(1.0)]], [[0.340741734e-1, 1.258819044, HFloat(1.0)], [0.340741734e-1, 1.258819044, HFloat(4.0)], [0., .9999999986, HFloat(4.0)], [0., .9999999986, HFloat(1.0)]], [[0., .9999999986, HFloat(1.0)], [0., .9999999986, HFloat(4.0)], [0.340741741e-1, .7411809533, HFloat(4.0)], [0.340741741e-1, .7411809533, HFloat(1.0)]], [[0.340741741e-1, .7411809533, HFloat(1.0)], [0.340741741e-1, .7411809533, HFloat(4.0)], [.1339745971, .4999999984, HFloat(4.0)], [.1339745971, .4999999984, HFloat(1.0)]], [[.1339745971, .4999999984, HFloat(1.0)], [.1339745971, .4999999984, HFloat(4.0)], [.2928932202, .2928932174, HFloat(4.0)], [.2928932202, .2928932174, HFloat(1.0)]], [[.2928932202, .2928932174, HFloat(1.0)], [.2928932202, .2928932174, HFloat(4.0)], [.5000000019, .1339745951, HFloat(4.0)], [.5000000019, .1339745951, HFloat(1.0)]], [[.5000000019, .1339745951, HFloat(1.0)], [.5000000019, .1339745951, HFloat(4.0)], [.7411809572, 0.340741731e-1, HFloat(4.0)], [.7411809572, 0.340741731e-1, HFloat(1.0)]], [[.7411809572, 0.340741731e-1, HFloat(1.0)], [.7411809572, 0.340741731e-1, HFloat(4.0)], [1.000000003, 0., HFloat(4.0)], [1.000000003, 0., HFloat(1.0)]], [[1.000000003, 0., HFloat(1.0)], [1.000000003, 0., HFloat(4.0)], [1.258819048, 0.340741744e-1, HFloat(4.0)], [1.258819048, 0.340741744e-1, HFloat(1.0)]], [[1.258819048, 0.340741744e-1, HFloat(1.0)], [1.258819048, 0.340741744e-1, HFloat(4.0)], [1.500000003, .1339745977, HFloat(4.0)], [1.500000003, .1339745977, HFloat(1.0)]], [[1.500000003, .1339745977, HFloat(1.0)], [1.500000003, .1339745977, HFloat(4.0)], [1.707106784, .2928932211, HFloat(4.0)], [1.707106784, .2928932211, HFloat(1.0)]], [[1.707106784, .2928932211, HFloat(1.0)], [1.707106784, .2928932211, HFloat(4.0)], [1.866025406, .5000000030, HFloat(4.0)], [1.866025406, .5000000030, HFloat(1.0)]], [[1.866025406, .5000000030, HFloat(1.0)], [1.866025406, .5000000030, HFloat(4.0)], [1.965925827, .7411809584, HFloat(4.0)], [1.965925827, .7411809584, HFloat(1.0)]], [[1.965925827, .7411809584, HFloat(1.0)], [1.965925827, .7411809584, HFloat(4.0)], [2., 1.000000004, HFloat(4.0)], [2., 1.000000004, HFloat(1.0)]]

(1)

 


Download op.mw

@Sunmaple what do u mean by break the axis ?!

@Carl Love and what if we want complex roots ?! what we should do there ?

@DJJerome1976 as u said,i think it is a bug,and cuase of that i said i have not anything to say ! anyway,good work ! 

@DJJerome1976 acutally i do not know why ! but when we gave trigonometric functions we have this issue ?! actually i do not have anything to say,

please verfiy this link you provided,tnx
i am really looking forward for see numerical linear algebra,tnx maplesoft good staff.

@Markiyan Hirnyk 

restart:

eq1 := 3*(1+sin(alfa1)^3)*(30/tan(alfa1)+60/tan(alfa2)+60/tan(alfa3))/(sin(alfa1)^2*cos(alfa1)*tan(alfa1)) = 3*(1+sin(alfa2)^3)*(30/tan(alfa2)+60/tan(alfa3))/(sin(alfa2)^2*cos(alfa2)*tan(alfa2));

eq2 := 3*(1+sin(alfa1)^3)*(30/tan(alfa1)+60/tan(alfa2)+60/tan(alfa3))/(sin(alfa1)^2*cos(alfa1)*tan(alfa1)) = (90*(1+sin(alfa3)^3))/(sin(alfa3)^2*cos(alfa3)*tan(alfa3));

        

eq3 := 3/tan(alfa1)+3/tan(alfa2)+3/tan(alfa3) = 25/2;

 

 

3*(1+sin(alfa1)^3)*(30/tan(alfa1)+60/tan(alfa2)+60/tan(alfa3))/(sin(alfa1)^2*cos(alfa1)*tan(alfa1)) = 3*(1+sin(alfa2)^3)*(30/tan(alfa2)+60/tan(alfa3))/(sin(alfa2)^2*cos(alfa2)*tan(alfa2))

 

3*(1+sin(alfa1)^3)*(30/tan(alfa1)+60/tan(alfa2)+60/tan(alfa3))/(sin(alfa1)^2*cos(alfa1)*tan(alfa1)) = 90*(1+sin(alfa3)^3)/(sin(alfa3)^2*cos(alfa3)*tan(alfa3))

 

3/tan(alfa1)+3/tan(alfa2)+3/tan(alfa3) = 25/2

(1)

solutions := fsolve({eq1, eq2, eq3}, {alfa1=0..2*Pi, alfa2=0..2*Pi, alfa3=0..2*Pi}) ;

{alfa1 = 5.983433139, alfa2 = 0.6685718187e-1, alfa3 = 6.151203019}

(2)

 


Download fsolve.mw

 

@mehdi jafari it is interesting ! that we assume alpha's to be positive ! but all three are negetive :D

@Carl Love thank you for your clearification,it was very useful

@love maths 

restart:

F:=proc(A::Matrix(3,3)) local V1,V2,V3,P,T;

 

V1, V2, V3:=A[..,1], A[..,2], A[..,3];

 

P:=plots[arrow]({V1, V2, V3}, color=red, width=[0.1, relative=false],scaling=constrained, axes=normal, orientation=[45,75]):

 

T:=plots[textplot3d]([[1, 5, 6, "V1"], [2, 1, 3, "V2"], [3, 6, 9, "V3"]], color=black):

 

plots[display](P, T, view=-1..10);end proc;

 

proc (A::(Matrix(3, 3))) local V1, V2, V3, P, T; V1, V2, V3 := A[() .. (), 1], A[() .. (), 2], A[() .. (), 3]; P := plots[arrow]({V1, V2, V3}, color = red, width = [.1, relative = false], scaling = constrained, axes = normal, orientation = [45, 75]); T := plots[textplot3d]([[1, 5, 6, "V1"], [2, 1, 3, "V2"], [3, 6, 9, "V3"]], color = black); plots[display](P, T, view = -1 .. 10) end proc

(1)

A := Matrix(3, 3, [1, 2, 3, 5, 1, 6, 6, 3, 9]);

A := Matrix(3, 3, {(1, 1) = 1, (1, 2) = 2, (1, 3) = 3, (2, 1) = 5, (2, 2) = 1, (2, 3) = 6, (3, 1) = 6, (3, 2) = 3, (3, 3) = 9})

(2)

F(A);

 

 


Download proc.mw

First 7 8 9 10 11 12 13 Last Page 9 of 23