749 Reputation

11 years, 115 days

i face error in your code...

@Carl Love at first this error was emerged :

interface(complexunit= j);
Error, (in interface) complexunit not a valid property name

in maple help page we have :

method=float
Compute the determinant of the n x n Matrix A which has numerical entries or complex numerical entries by using Gaussian elimination.

but without using this option,we can evaluate determinant very efficiently. thus is what the benefit of this option ?!

 > restart:
 > interface(complexunit= j);
 > V:= < 150*d, 0 >:
 > A:= < 13-I*14, -(12-I*16); 27+I*16, -(26+I*13) >:
 > LinearAlgebra:-Determinant(A,method=float);
 >
 (1)
 >

you are very welcome...

@Chia u can also see ?convert/POLYGONS , so that use this :

 > restart:
 > with(plottools):
 > with(plots):
 > display(cylinder([1, 1, 1], 1, 3), orientation = [45, 70], scaling = constrained, grid = [2, 2, 2]);
 >
 > op(op(1,%)):
 > p2 := op(op(convert(%%, POLYGONS)));
 (1)
 >

what do u mean by break the axis ?!...

@Sunmaple what do u mean by break the axis ?!

and what if we want complex roots ?!...

@Carl Love and what if we want complex roots ?! what we should do there ?

i think so...

@DJJerome1976 as u said,i think it is a bug,and cuase of that i said i have not anything to say ! anyway,good work !

actually the problem is with tan() funct...

@DJJerome1976 acutally i do not know why ! but when we gave trigonometric functions we have this issue ?! actually i do not have anything to say,

the link for maplesim update does not op...

i am really looking forward for see numerical linear algebra,tnx maplesoft good staff.

i inserted Thomas Richard's modification...

 > restart:
 > eq1 := 3*(1+sin(alfa1)^3)*(30/tan(alfa1)+60/tan(alfa2)+60/tan(alfa3))/(sin(alfa1)^2*cos(alfa1)*tan(alfa1)) = 3*(1+sin(alfa2)^3)*(30/tan(alfa2)+60/tan(alfa3))/(sin(alfa2)^2*cos(alfa2)*tan(alfa2));
 > eq2 := 3*(1+sin(alfa1)^3)*(30/tan(alfa1)+60/tan(alfa2)+60/tan(alfa3))/(sin(alfa1)^2*cos(alfa1)*tan(alfa1)) = (90*(1+sin(alfa3)^3))/(sin(alfa3)^2*cos(alfa3)*tan(alfa3));
 >
 > eq3 := 3/tan(alfa1)+3/tan(alfa2)+3/tan(alfa3) = 25/2;
 >
 >
 (1)
 > solutions := fsolve({eq1, eq2, eq3}, {alfa1=0..2*Pi, alfa2=0..2*Pi, alfa3=0..2*Pi}) ;
 (2)
 >

interesting !...

@mehdi jafari it is interesting ! that we assume alpha's to be positive ! but all three are negetive :D

thank u...

@Carl Love thank you for your clearification,it was very useful

use procedure...

 > restart:
 > F:=proc(A::Matrix(3,3)) local V1,V2,V3,P,T;
 >
 > V1, V2, V3:=A[..,1], A[..,2], A[..,3];
 >
 > P:=plots[arrow]({V1, V2, V3}, color=red, width=[0.1, relative=false],scaling=constrained, axes=normal, orientation=[45,75]):
 >
 > T:=plots[textplot3d]([[1, 5, 6, "V1"], [2, 1, 3, "V2"], [3, 6, 9, "V3"]], color=black):
 >
 > plots[display](P, T, view=-1..10);end proc;
 >
 (1)
 > A := Matrix(3, 3, [1, 2, 3, 5, 1, 6, 6, 3, 9]);
 (2)
 > F(A);
 >