pstone

205 Reputation

4 Badges

1 years, 338 days

MaplePrimes Activity


These are Posts that have been published by pstone

Curve sketching is an important skill for all calculus students to learn. In an era where technology is increasingly relied upon to perform mathematical computations and representations, maintaining fundamental skills such as curve sketching is more important than ever.

The new “Curve Sketching” collection is now available on Maple Learn. This collection provides background information on the process of curve sketching and opportunities to put this knowledge into practice. By starting with the “Curve Sketching Guide” and “Relationships Between Derivatives” documents, students are exposed to observational and computational strategies for drawing a function and its 1st and 2nd derivatives.

After looking through these documents, students can begin to practice sketching by observing and interpreting graphical properties with the “Sketch Derivative From Function Graph”, “Sketch Second Derivative From Function Graph”, and “Sketch Function From Derivative Graphs” activities:

Once a student has mastered extracting sketching information by graphical observation, they are ready for the next step: extracting information from a function’s definition. At this point, the student is ready to try sketching from a blank canvas with the “Sketch Curve From Function Definition” activity:

This collection also has activities for students below the calculus level. For example, the “Curve Sketching Quadratics Activity”, can be completed using only factoring strategies:

Whether you are a quadratics rookie or a calculus pro, this collection has an interactive activity to challenge your knowledge. Have fun sketching!

 

A new “Sudoku Puzzle” document is now on Maple Learn! Sudoku is one of the world’s most popular puzzle games and it is now ready to play on our online platform. 

This document is a great example of how Maple scripts can be used to create complex and interactive content. Using Maple’s built-in DocumentTools:-Canvas package, anyone can build and share content in Maple Learn. If you are new to scripting, a great place to start is with one of the scripting templates, which are accessible through the Build Interactive Content help page. In fact, I built the Sudoku document script by starting from the “Clickable Plots” template.

A Sudoku puzzle is a special type of Latin Square. The concept of a Latin Square was introduced to the mathematical community by Leonard Euler in his 1782 paper, Recherches sur une nouvelle espèce de Quarrés, which translates to “Research on a new type of square”. A Latin Square is an n by n square array composed of n symbols, each repeated exactly once in every row and column. The Sudoku board is a Latin Square where n=9, the symbols are the digits from 1 to 9,  and there is an additional requirement that each 3 by 3 subgrid contains each digit exactly once. 

Mathematical research into Sudoku puzzles is still ongoing. While the theory about Latin Squares is extensive, the additional parameters and relative novelty of Sudoku means that there are still many open questions about the puzzle. For example, a 2023 paper from Peter Dukes and Kate Nimegeers examines Sudoku boards through the lenses of graph theory and linear algebra.

The modern game of Sudoku was created by a 74-year-old Indiana retiree named Howard Garnes in 1979 and published under the name “Number Place”. The game had gained popularity in Japan by the mid-1980s, where it was named “Sudoku,” an abbreviation of the phrase “Sūji wa dokushin ni kagiru,” which means “the numbers must be single”.

Today, Sudoku is a worldwide phenomenon. This number puzzle helps players practice using their logical reasoning, short-term memory, time management, and decision-making skills, all while having fun. Furthermore, research from the International Journal of Geriatric Psychiatry concluded that doing regular brain exercises, like solving a Sudoku, is correlated with better brain health for adults over 50 years old. Additionally, research published in the BMJ medical journal suggests that playing Sudoku can help your brain build and maintain cognition, meaning that mental decline due to degenerative conditions like Alzheimer’s would begin from a better initial state, and potentially delay severe symptoms. However, playing Sudoku will by no means cure or prevent such conditions.

If you are unfamiliar with the game of Sudoku, need a refresher on the rules, or want to improve your approach, the “Sudoku Rules and Strategies” document is the perfect place to start. This document will teach you essential strategies like Cross Hatching:

And Hidden Pairs:

After reading through this document, you will have all the tools you need to start solving puzzles with the “Sudoku Puzzle” document on Maple Learn. 

Have fun solving!

 

A new collection has been released on Maple Learn! The new Pascal’s Triangle Collection allows students of all levels to explore this simple, yet widely applicable array.

Though the binomial coefficient triangle is often referred to as Pascal’s Triangle after the 17th-century mathematician Blaise Pascal, the first drawings of the triangle are much older. This makes assigning credit for the creation of the triangle to a single mathematician all but impossible.

Persian mathematicians like Al-Karaji were familiar with the triangular array as early as the 10th century. In the 11th century, Omar Khayyam studied the triangle and popularised its use throughout the Arab world, which is why it is known as “Khayyam’s Triangle” in the region. Meanwhile in China, mathematician Jia Xian drew the triangle to 9 rows, using rod numerals. Two centuries later, in the 13th century, Yang Hui introduced the triangle to greater Chinese society as “Yang Hui’s Triangle”. In Europe, various mathematicians published representations of the triangle between the 13th and 16th centuries, one of which being Niccolo Fontana Tartaglia, who propagated the triangle in Italy, where it is known as “Tartaglia’s Triangle”. 

Blaise Pascal had no association with the triangle until years after his 1662 death, when his book, Treatise on Arithmetical Triangle, which compiled various results about the triangle, was published. In fact, the triangle was not named after Pascal until several decades later, when it was dubbed so by Pierre Remond de Montmort in 1703.

The Maple Learn collection provides opportunities for students to discover the construction, properties, and applications of Pascal’s Triangle. Furthermore, students can use the triangle to detect patterns and deduce identities like Pascal’s Rule and The Binomial Symmetry Rule. For example, did you know that colour-coding the even and odd numbers in Pascal’s Triangle reveals an approximation of Sierpinski’s Fractal Triangle?

See Pascal’s Triangle and Fractals

Or that taking the sum of the diagonals in Pascal's Triangle produces the Fibonacci Sequence?

See Pascal’s Triangle and the Fibonacci Sequence

Learn more about these properties and discover others with the Pascal’s Triangle Collection on Maple Learn. Once you are confident in your knowledge of Pascal’s Triangle, test your skills with the interactive Pascal’s Triangle Activity

 

 

Almost 300 years ago, a single letter exchanged between two brilliant minds gave rise to one of the most enduring mysteries in the world of number theory. 

In 1742, Christian Goldbach penned a letter to fellow mathematician Leonhard Euler proposing that every even integer greater than 2 can be written as a sum of two prime numbers. This statement is now known as Goldbach’s Conjecture (it is considered a conjecture, and not a theorem because it is unproven). While neither of these esteemed mathematicians could furnish a formal proof, they shared a conviction that this conjecture held the promise of being a "completely certain theorem." The following image demonstrates how prime numbers add to all even numbers up to 50:

From its inception, Goldbach's Conjecture has enticed generations of mathematicians to seek evidence of its legitimacy. Though weaker versions of the conjecture have been proved, the definitive proof of the original conjecture has remained elusive. There was even once a one-million dollar cash prize set to be awarded to anyone who could provide a valid proof, though the offer has now elapsed. While a heuristic argument, which relies on the probability distribution of prime numbers, offers insight into the conjecture's likelihood of validity, it falls short of providing an ironclad guarantee of its truth.

The advent of modern computing has emerged as a beacon of progress. With vast computational power at their disposal, contemporary mathematicians like Dr. Tomàs Oliveira e Silva have achieved a remarkable feat—verification of the conjecture for every even number up to an astonishing 4 quintillion, a number with 18 zeroes.

Lazar Paroski’s Goldbach Conjecture Document on Maple Learn offers an avenue for users of all skill levels to delve into one of the oldest open problems in the world of math. By simply opening this document and inputting an even number, a Maple algorithm will swiftly reveal Goldbach’s partition (the pair of primes that add to your number), or if you’re lucky it could reveal that you have found a number that disproves the conjecture once and for all.

2-dimensional motion and displacement are some of the first topics that high school students learn in their physics class. In my physics classes, I loved solving 2-dimensional displacement problems because they require the use of so many different math concepts: trigonometry, coordinate conversions, and vector operations are all necessary to solve these problems. Though displacement problems can seem complicated, they are easy to visualize.
For example, below is a visualization of the displacement of someone who walked 10m in the direction 30o North of East, then walked 15m in the direction 45o South of East:

From just looking at the diagram, most people could identify that the final position is some angle Southeast of the initial position and perhaps estimate the distance between these two positions. However, finding an exact solution requires various computations, which are all outlined in the Directional Displacement Example Problem document on Maple Learn.

Solving a problem like this is a great way to practice solving triangles, adding vectors, computing vector norms, and converting points to and from polar form. If you want to practice these math skills, try out Maple Learn’s Directional Displacement Quiz; this document randomly generates displacement questions for you to solve. Have fun practicing!

 

1 2 Page 1 of 2