tomleslie

13836 Reputation

20 Badges

14 years, 342 days

MaplePrimes Activity


These are replies submitted by tomleslie

@planetmknzm 

using the big green up-arrow in the Mapleprimes toolbar to upload worksheets which are causing you a problem?

That way, responders here can execute your worksheet, figure out  possible improvements, and do all kinds of useful stuff.

On the other hand you can upload a video which doesn't show (most of) your code, so cannot be read , cannot be executed, cannot be analysed, and hence is unlikely to be "improved"

  1. Rule 1 - upload an executable worksheet
  2. Rule 2 - if you think there is a "better" approach, stop thinking and apply Rule 1

@Kitonum 

You could set the animation speed using the FPS box in Maple's animation toolbar

you still don't need the InertForm() package, entering data as strings, then parsing strings etc etc - Sure it will work, but that is the conplicated way to do something simple. See the attached for a "simple" variation on my original answer, based on the following observations

  1. entering data as strings - cumbersome and unnecessary
  2. "parsing" such entries - cumbersome and unnecessary
  3. of course the above approaches will "work", but why bother? Isn't the attached just - well, simpler?

#
# One possible variant of OP's desired expression
#
  Set:= `%+`(  1/3%*<3^(1/2), -3^(1/2), 3^(1/2), 0>,
              -1/3%*<3^(1/2),  3^(1/2), 3^(1/2), 0>
              +3*<2,1,1,0>
            );
#
# Quick check on export+import to/from MathML
#
  a:= MathML:-Export(Set):
  MathML:-Import(a);

`%+`(`%*`(1/3, Vector(4, {(1) = sqrt(3), (2) = -sqrt(3), (3) = sqrt(3), (4) = 0})), -`%*`(1/3, Vector(4, {(1) = sqrt(3), (2) = sqrt(3), (3) = sqrt(3), (4) = 0}))+(Vector(4, {(1) = 6, (2) = 3, (3) = 3, (4) = 0})))

 

`%+`(`%*`(1/3, Vector[column](%id = 36893488148080653604)), -`%*`(1/3, Vector[column](%id = 36893488148080653724))+Vector[column](%id = 36893488148080653844))

(1)

#
# Another possible variant of OP's desired expression
#
  Set:= `%+`(  1/3%*<3^(1/2), -3^(1/2), 3^(1/2), 0>,
              -1/3%*<3^(1/2),  3^(1/2), 3^(1/2), 0>,
               <2,1,1,0>
            );
#
# Quick check on  export+import to/from MathML
#
  a:= MathML:-Export(Set):
  MathML:-Import(a);

`%+`(`%*`(1/3, Vector(4, {(1) = sqrt(3), (2) = -sqrt(3), (3) = sqrt(3), (4) = 0})), -`%*`(1/3, Vector(4, {(1) = sqrt(3), (2) = sqrt(3), (3) = sqrt(3), (4) = 0})), Vector(4, {(1) = 2, (2) = 1, (3) = 1, (4) = 0}))

 

`%+`(`%*`(1/3, Vector[column](%id = 36893488148080646372)), -`%*`(1/3, Vector[column](%id = 36893488148080646492)), Vector[column](%id = 36893488148080646612))

(2)

 

Download inert3.mw

 

whether you use "worksheet mode", "Document mode", "1-D Input", "2D-input" what. You can save the worksheet on your local machine as a file with extension ".mw". Upload this file to this site using the big green up-arrow in the Mapleprimes toolbar

post an executable worksheet using the big green up-arrow in the Mapleprimes toolbar - because no-one here is going to re-type your stuff from a useless "picture"

take a long hard look at the boundary condition

theta(0, t) = 1 + b(1 - cos(varpi*t))

'b' has been defined as 1, so the above is equivalent to

theta(0, t) = 1 + 1(1 - cos(varpi*t))

The second term on the rhs will be interpreted as as a function named '1' with an argument (which is irrelevant) because in Maple the construction 1(x) will return 1, so the above bc evaluates to

theta(0, t) = 2

I'm guessing that this isn't what you intended!

@Rouben Rostamian  

which applies to the response you have given, as well as that gien by dharr.

(And before I make this observation, I want to make it clear that I have been playing with this problem for a while, and so far haven't come with anything significant)

My issue with both Rouben's response (and that of dharr), is that both imply that the velocity in the x-direction changes. My simple-mided brain says that there is no "force" in the x-direction, hence there can be no acceleration in the x-direction, hence the x-velocity cannot change.

So the question for boith Rouben and dharr - why does the x-velocity change? What force is causing this?

as shown in the attached

  restart;
  expr:= diff(u(t,x,v),t)+v*diff(u(t,x,v),x)+diff(u(t,x,v),x)*int(u(t,x,v)*v*exp(x),v)-v*diff(u(t,x,v),v)*sin(v)*int(v*diff(u(t,x,v),x),v)=0;
  kf:=convert(FunctionAdvisor(known_functions, quiet), set):
  seq( `if`(member(op(0,j), kf), j, NULL), j in indets(expr, function));

diff(u(t, x, v), t)+v*(diff(u(t, x, v), x))+(diff(u(t, x, v), x))*(int(u(t, x, v)*v*exp(x), v))-v*(diff(u(t, x, v), v))*sin(v)*(int(v*(diff(u(t, x, v), x)), v)) = 0

 

exp(x), sin(v)

(1)

 

Download isol2.mw

@Luxio 

my first answer still applies!

However the following "toy" example shows usage of both the CodeGeneration:-Python() command and the Python() package, just to give some idea of what is possible.

  restart:

  alias(CG=CodeGeneration):
  alias(P=Python):
#
# Define a not-too-trivial" procedure in Maple
#
  detHilbert:=  proc(n::posint)
                    uses LinearAlgebra;
                    return Determinant( HilbertMatrix( n ) );
                end proc:
#
# Compute one value for later comparison purposes
#
  evalf(detHilbert(10));

0.2164179226e-52

(1)

#
# Generate "Python code" for the above procedure (as a string)
#
  pycode:= CodeGeneration:-Python(detHilbert, output=string);

"import numpy.linalg
import scipy.linalg

def detHilbert (n):
    return(numpy.linalg.det(scipy.linalg.hilbert(n)))
"

(2)

#
# Define the above procedure within Python
#
  Python:-EvalString( pycode, output=none );
#
# Execute the Python procedure (in Python)
#
  Python:-EvalString("detHilbert(10)")

HFloat(2.1642457579118234e-53)

(3)

 

Download pyMaple.mw

Maple 2022.1 produces the attached - which at least avoids the Float(undefined) issue


 

NULL

restart

interface(version)

`Standard Worksheet Interface, Maple 2022.1, Windows 7, May 26 2022 Build ID 1619613`

(1)

with(Student[NumericalAnalysis])

NULL

fff := (`&eta;__1`^2-1.)^2*(`&zeta;__1`^2-1.)^2*(0.12053033309e-3*`&zeta;__1`-4.5961086182*10^(-8)*`&eta;__1`^2*`&zeta;__1`^4-5.6584306313*10^(-8)*`&eta;__1`^4*`&zeta;__1`^4-1.5606093643*10^(-7)*`&zeta;__1`*`&eta;__1`^2-4.168658171*10^(-7)*`&zeta;__1`*`&eta;__1`-1.6404108106*10^(-7)*`&zeta;__1`^2*`&eta;__1`-1.0454641424*10^(-8)*`&eta;__1`*`&zeta;__1`^4+1.0615594865*10^(-8)*`&eta;__1`^5*`&zeta;__1`^4+5.4851856568*10^(-9)*`&eta;__1`^3*`&zeta;__1`^2+5.6161016651*10^(-9)*`&eta;__1`^3*`&zeta;__1`^4-1.4132765167*10^(-8)*`&eta;__1`^5*`&zeta;__1`^2-7.8157365683*10^(-7)*`&zeta;__1`*`&eta;__1`^4+2.9373057668*10^(-8)*`&eta;__1`^5*`&zeta;__1`^5-5.2577413654*10^(-8)*`&eta;__1`^5*`&zeta;__1`^3-7.032574429*10^(-8)*`&eta;__1`^3*`&zeta;__1`^5+2.3272955826*10^(-8)*`&eta;__1`^5*`&zeta;__1`+1.5782217112*10^(-7)*`&eta;__1`^3*`&zeta;__1`^3+2.1771522925*10^(-8)*`&eta;__1`*`&zeta;__1`^5-8.3051507888*10^(-8)*`&eta;__1`^3*`&zeta;__1`-2.2997952126*10^(-8)*`&eta;__1`*`&zeta;__1`^3+0.22608138853e-5*`&eta;__1`^4-0.10412827312e-5*`&zeta;__1`^4-0.53422910417e-5*`&zeta;__1`^3-0.53519692056e-5*`&eta;__1`^2+0.54946587424e-4*`&zeta;__1`^2+7.5007400675*10^(-7)*`&zeta;__1`^5-6.6427826628*10^(-9)*`&eta;__1`^3+3.5821686059*10^(-9)*`&eta;__1`^5-2.4361928132*10^(-7)*`&eta;__1`+0.84495460425e-5*`&eta;__1`^2*`&zeta;__1`^2-0.44664222239e-5*`&eta;__1`^4*`&zeta;__1`^2-0.4071733639e-5*`&eta;__1`^4*`&zeta;__1`^3+0.87015148204e-5*`&eta;__1`^2*`&zeta;__1`^3+0.25592467903e-5*`&eta;__1`^4*`&zeta;__1`^5-0.5430102455e-5*`&eta;__1`^2*`&zeta;__1`^5+0.62041471332e-4)/(-0.22768667085e-2*`&eta;__1`-.20653118433*`&zeta;__1`+0.11770764739e-2*`&eta;__1`^9*`&zeta;__1`^2+.14111119517*`&eta;__1`^4+.66506159208*`&zeta;__1`^4-.60151130424*`&zeta;__1`^5+.58641863992*`&zeta;__1`^3+0.49423587807e-2*`&eta;__1`^3-0.32350168299e-2*`&eta;__1`^5-1.082755589*`&eta;__1`^2-1.3163499567*`&zeta;__1`^2+0.52300044044e-1*`&eta;__1`^5*`&zeta;__1`^7-0.40389225121e-1*`&eta;__1`^3*`&zeta;__1`^7+0.10746052526e-1*`&eta;__1`*`&zeta;__1`^7+0.37597513815e-2*`&eta;__1`^9*`&zeta;__1`^7+0.26109384594e-2*`&eta;__1`^7*`&zeta;__1`^9-0.70972300998e-2*`&eta;__1`^5*`&zeta;__1`^9+0.63616448215e-2*`&eta;__1`^3*`&zeta;__1`^9-0.18753531811e-2*`&eta;__1`*`&zeta;__1`^9-.22701198791*`&eta;__1`^6*`&zeta;__1`^6+0.56271163518e-2*`&eta;__1`^4*`&zeta;__1`^8-0.48478855017e-1*`&eta;__1`^8*`&zeta;__1`^4-.22761063366*`&zeta;__1`^6*`&eta;__1`^2+.46301464814*`&zeta;__1`^6*`&eta;__1`^4-0.18114547653e-2*`&eta;__1`^9*`&zeta;__1`^4+0.81527768559e-3*`&eta;__1`^9*`&zeta;__1`^6+.65574325943-.15635457174*`&eta;__1`^8*`&zeta;__1`+.64029273264*`&eta;__1`^8*`&zeta;__1`^3-1.8403657443*`&eta;__1`^6*`&zeta;__1`^7-0.22007436935e-2*`&eta;__1`^2*`&zeta;__1`^8-0.30978282387e-2*`&zeta;__1`*`&eta;__1`+.70551660939*`&zeta;__1`*`&eta;__1`^2+0.38970885732e-2*`&zeta;__1`^2*`&eta;__1`-.62093209055*`&eta;__1`^2*`&zeta;__1`^4+1.9334990569*`&eta;__1`^2*`&zeta;__1`^2-.80179945016*`&eta;__1`^4*`&zeta;__1`^4+.1920464905*`&eta;__1`^4*`&zeta;__1`^2-0.81381430978e-3*`&eta;__1`*`&zeta;__1`^4+0.46097207851e-2*`&eta;__1`^3*`&zeta;__1`^4-0.93963570584e-2*`&eta;__1`^3*`&zeta;__1`^2-0.85894534062e-2*`&eta;__1`^5*`&zeta;__1`^4+0.8278524871e-2*`&eta;__1`^5*`&zeta;__1`^2+4.2209528188*`&eta;__1`^4*`&zeta;__1`^3-2.669958003*`&eta;__1`^2*`&zeta;__1`^3-.94779423754*`&zeta;__1`*`&eta;__1`^4-5.9197768267*`&eta;__1`^4*`&zeta;__1`^5+3.4563944947*`&eta;__1`^2*`&zeta;__1`^5-.10468335582*`&eta;__1`^5*`&zeta;__1`^5+0.80855499912e-1*`&eta;__1`^5*`&zeta;__1`^3+0.7601825081e-1*`&eta;__1`^3*`&zeta;__1`^5-0.21374958034e-1*`&eta;__1`^5*`&zeta;__1`-0.56315405543e-1*`&eta;__1`^3*`&zeta;__1`^3-0.18963873748e-1*`&eta;__1`*`&zeta;__1`^5+0.14324735033e-1*`&eta;__1`^3*`&zeta;__1`+0.13191002642e-1*`&eta;__1`*`&zeta;__1`^3-0.301782967e-2*`&eta;__1`^6*`&zeta;__1`^8+.34307133883*`&eta;__1`^6+.26989142602*`&zeta;__1`^7+0.75042415188e-3*`&eta;__1`^7-0.57170204466e-1*`&eta;__1`^8-0.40854298828e-3*`&zeta;__1`^8-0.18089939414e-3*`&eta;__1`^9-0.48267577378e-1*`&zeta;__1`^9-0.40463518464e-2*`&zeta;__1`^6-0.26416622831e-1*`&eta;__1`^7*`&zeta;__1`^7-0.20189726843e-2*`&eta;__1`^9*`&zeta;__1`-.81152175007*`&eta;__1`^8*`&zeta;__1`^5+.32758358916*`&eta;__1`^8*`&zeta;__1`^7+.60516338422*`&eta;__1`^6*`&zeta;__1`-2.7777061884*`&eta;__1`^6*`&zeta;__1`^3+3.8764153863*`&eta;__1`^6*`&zeta;__1`^5+0.64408301026e-3*`&eta;__1`^3*`&zeta;__1`^8+0.14976271107e-3*`&eta;__1`*`&zeta;__1`^8-0.17374541537e-2*`&eta;__1`^5*`&zeta;__1`^8+0.77976967502e-2*`&eta;__1`^9*`&zeta;__1`^3-0.95384754473e-2*`&eta;__1`^9*`&zeta;__1`^5+0.9436084324e-3*`&eta;__1`^7*`&zeta;__1`^8-0.95617026598e-3*`&eta;__1`*`&zeta;__1`^6-0.79980551762e-3*`&eta;__1`^3*`&zeta;__1`^6+0.52833995188e-2*`&eta;__1`^5*`&zeta;__1`^6-0.43427014208e-2*`&eta;__1`^7*`&zeta;__1`^6+0.66050016962e-2*`&eta;__1`^7*`&zeta;__1`^4-0.39563328597e-2*`&eta;__1`^7*`&zeta;__1`^2-.9191903249*`&eta;__1`^6*`&zeta;__1`^2+.80614880365*`&eta;__1`^6*`&zeta;__1`^4+2.9678721471*`&zeta;__1`^7*`&eta;__1`^4-1.724981418*`&zeta;__1`^7*`&eta;__1`^2+.13649316215*`&eta;__1`^6*`&zeta;__1`^9+.23302831691*`&eta;__1`^2*`&zeta;__1`^9-.32125390168*`&eta;__1`^4*`&zeta;__1`^9+0.12167023924e-1*`&eta;__1`^7*`&zeta;__1`-0.45528793761e-1*`&eta;__1`^7*`&zeta;__1`^3+0.57167454208e-1*`&eta;__1`^7*`&zeta;__1`^5+.10999473421*`&eta;__1`^8*`&zeta;__1`^2-0.43456747248e-2*`&eta;__1`^8*`&zeta;__1`^6)

plot3d(sqrt(fff), `&zeta;__1` = -1 .. 1, `&eta;__1` = -1 .. 1, color = green)

 

Quadrature(Quadrature(sqrt(fff), `&zeta;__1` = -1 .. 1, method = romberg[3]), `&eta;__1` = -1 .. 1, method = romberg[3])

0.2745463666e-1+0.*I

(2)

Quadrature(Quadrature(sqrt(fff), `&zeta;__1` = -1 .. 1, method = romberg[4]), `&eta;__1` = -1 .. 1, method = romberg[4])

0.3314502549e-1+0.*I

(3)

Quadrature(Quadrature(sqrt(fff), `&zeta;__1` = -1 .. 1, method = romberg[5]), `&eta;__1` = -1 .. 1, method = romberg[5])

0.3621732017e-1+0.*I

(4)

Quadrature(Quadrature(sqrt(fff), `&zeta;__1` = -1 .. 1, method = romberg[6]), `&eta;__1` = -1 .. 1, method = romberg[6])

0.3781929307e-1+0.1394002550e-4*I

(5)

``


 

Download undef.mw

 

@rashmi 

Even for j=1, lets say red colour curve, there are two curves there

As I explained before, technically there is one curve, with a gap in it because the relevant equation for yj(r) generates complex values.

To see onlyone section of each curve , you can plot with r=0..10 or r=-10..0, rather than r=-10..10 as shown in the attached.

  restart;
  expr:=[ [ (1.428571429*(r^2+.49-4*r*(r^2+.49-2*exp(-.1/r))/(2*r-.2*exp(-.1/r)/r^2)))*csc((1/3)*Pi),
          sqrt(16*r^2*(r^2+.49-2*exp(-.1/r))/(2*r-.2*exp(-.1/r)/r^2)^2+.49*cos((1/3)*Pi)^2-2.040816327*(r^2+.49-4*r*(r^2+.49-2*exp(-.1/r))/(2*r-.2*exp(-.1/r)/r^2))^2*cot((1/3)*Pi)^2)
        ],
        [(1.428571429*(r^2+.49-4*r*(r^2+.49-2*exp(-.1/r))/(2*r-.2*exp(-.1/r)/r^2)))*csc((1/3)*Pi),
          -sqrt(16*r^2*(r^2+.49-2*exp(-.1/r))/(2*r-.2*exp(-.1/r)/r^2)^2+.49*cos((1/3)*Pi)^2-2.040816327*(r^2+.49-4*r*(r^2+.49-2*exp(-.1/r))/(2*r-.2*exp(-.1/r)/r^2))^2*cot((1/3)*Pi)^2)
        ],
        [(5.*(r^2+0.4e-1-4*r*(r^2+0.4e-1-2*exp(-.2/r))/(2*r-.2*exp(-.2/r)/r^2)))*csc((1/3)*Pi),
          sqrt(16*r^2*(r^2+0.4e-1-2*exp(-.2/r))/(2*r-.2*exp(-.2/r)/r^2)^2+0.1e-1*cos((1/3)*Pi)^2-25.*(r^2+0.4e-1-4*r*(r^2+0.4e-1-2*exp(-.2/r))/(2*r-.2*exp(-.2/r)/r^2))^2*cot((1/3)*Pi)^2)
        ],
        [(5.*(r^2+0.4e-1-4*r*(r^2+0.4e-1-2*exp(-.2/r))/(2*r-.2*exp(-.2/r)/r^2)))*csc((1/3)*Pi),
         -sqrt(16*r^2*(r^2+0.4e-1-2*exp(-.2/r))/(2*r-.2*exp(-.2/r)/r^2)^2+0.1e-1*cos((1/3)*Pi)^2-25.*(r^2+0.4e-1-4*r*(r^2+0.4e-1-2*exp(-.2/r))/(2*r-.2*exp(-.2/r)/r^2))^2*cot((1/3)*Pi)^2)
        ]
       ]:

 

#
# From the above, the first and second parametric
# curves will the have the same "x-value" and
#  "y-values" of opposite sign, so the second
# parametric curve is identical to the first
# parametric curve exceptfor a reflection in the x-axis.
#
# The same applies to the third and fourth parametric
# curves - identical except for reflection in x-axis
#
  plot( [seq( [expr[j][], r=-10..10], j=1..4)],
          -13 .. 5,
          -5 .. 5,
          color=[red, blue, green, black]);
  plot( [seq( [expr[j][], r=0..10], j=1..4)],
          -13 .. 5,
          -5 .. 5,
          color=[red, blue, green, black]);
  plot( [seq( [expr[j][], r=-10..0], j=1..4)],
         -13 .. 5,
         -5 .. 5,
         color=[red, blue, green, black]);

 

 

 

 

 

 

 

Download parPlot3.mw

 

without error in Maple  2022.1 on Windows.

So doesn't look like a Maple version issue.

Soesn't look like an OS issue - at keast for Linux/Windows

maybe MacOS issue?

Run the attached (which does a version check) and upload hte output

restart:
interface(version);

`Standard Worksheet Interface, Maple 2022.1, Windows 7, May 26 2022 Build ID 1619613`

(1)

with(plots):

equ1 := BesselJ(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4) + BesselY(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4):

equ2 := BesselJ(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4) + 5*BesselY(sqrt(17)/2, 10*sqrt(t)*sqrt(2))/t^(1/4):

equ3 := BesselJ(sqrt(17)/2, 10*sqrt(t))/t^(1/4) + 5*BesselY(sqrt(17)/2, 10*sqrt(t))/t^(1/4):

tmax   := 30:
colors := ["Red", "Violet", "Blue"]:

p1 := plot([equ1, equ2, equ3], t = 0 .. tmax, labels = [t, T[2](t)], tickmarks = [0, 0], labelfont = [TIMES, ITALIC, 12], axes = boxed, color = colors):

ymin := min(op~(1, op~(2, op~(2, [plottools:-getdata(p1)])))):
ymax := max(op~(2, op~(2, op~(2, [plottools:-getdata(p1)])))):
dy   := 2*ymax:

legend1 := typeset(C[3] = 1, ` , `, C[4] = 1, ` , `, Omega^2 = 50):
legend2 := typeset(C[3] = 1, ` , `, C[4] = 5, ` , `, Omega^2 = 50):
legend3 := typeset(C[3] = 1, ` , `, C[4] = 5, ` , `, Omega^2 = 25):

p2 := seq(textplot([tmax-2, ymax-k*dy/20, legend||k], align=left), k=1..3):

p3 := seq(plot([[tmax-2, ymax-k*dy/20], [tmax-1, ymax-k*dy/20]], color=colors[k]), k=1..3):
display(p1, p2, p3, view=[default, -ymax..ymax], size=[800, 500])

 

 

Download oddPlot.mw

@Tereso 
'f(x,y)^2+(z-1)^2=0  still requires z=1 for the same reason as before so you are probably better to use a 2-D implicitplot and transform it to 3D, as in the attached "toy" example.

Whatever algorithm implicitplot3d() is using doesn't seem to work very well when one of the coordinates is restricted to a single value :-(

  restart;
  with(plots):
  with(plottools):
  p1:=implicitplot( x^2+y^2=9, x=-10..10, y=-10..10):
  f:=transform( (x,y)->[x,y,1]):
  display(f(p1));

 

  

 

 

 


 

Download 3dplot.mw

@wswain 

then you can set a "default" unit for a given dimension - in the attached I have set the default unit for angular velocity to be 'rpm'. Now no conversion is necessary.

On the subject on "context menus" - they can never contain all the possibilities. They would have to be so big (or nested so deep) that they would become unusable. They are best thought of as containing only "most commonly used" stuff.

restart

Units:-UseUnit('rpm'); with(Units[Standard])

false

(1)

 

acc1 := 9.0*Unit('gn')

9.0*Units:-Unit(gn)

(2)

arm1 := 10.0*Unit('ft')

10.0*Units:-Unit(ft)

(3)

vel1 := (acc1*arm1)^(1/2)

16.40170792*Units:-Unit(m/s)

(4)

circ1 := 2*Pi*arm1

62.83185308*Units:-Unit(ft)

(5)

T1 := circ1/vel1

1.167631378*Units:-Unit(s)

(6)

f1 := 1/T1

.8564346752*Units:-Unit(1/s)

(7)

omega1 := 2*Pi*Unit('rad')*f1;

51.38608049*Units:-Unit(rpm)

(8)

 

Download unitProb2.mw

@Christian Wolinski 

Assuming you have the automatic back-up on, ie the menu entry

Tools->Options->General->Auto save entry

checkbox is "checked",  then Maple will be backing up your work at the interval specified. These backups can be recovered in a susequent Maple session using

File->Restore Backup

which will produce a pop-up window where you can browse for the backup you want. (Rather amusingly, in this pop-up, one has to uses the horizontal scroll bar in order to scroll vertically!). Alternatively, you can use the

File->Open

and navigate  to the backup directory, which in a standard Windows installlation is located at

C:/Users/yourUserName/Maple/Backup

A few warnings

  1. If the checkbox Tools->Options->General->Keep files is set (the default) then you will keep the backup files even after using a "Save" or "Save as" command. If this is unset, then the "Save" or "Save as" command, performs the "save" operation and deletes the backup.
  2. It is generally good practice when you open a new Maple worksheet to save it immediately with "sensible" name. Otherwise, (assuming Keep files checkbox is set), your backup directory will contain a lot of files called something like "untitled3214_MAS.bak" - which isn't exactly helpful. You can, of course, generally figure out which one you want from the datestamp/timestamp.
  3. The default interval (which you can change) between backups is 3minutes. If you have a BIG worksheet, then you may notice that Maple becomes "unresponsive" for a few seconds every 3mins. This is unavoidable. I'm pretty sure that when Maple is performing a backup, the annunciator in the bottom left corner of the Maple GUI, says "saving" - so at least you can check that Maple hasn't died on you! Increasing the back-up interval is a trade-off between how much work you risk losing, and how annoying you find the periodic non-response.
First 15 16 17 18 19 20 21 Last Page 17 of 207