vs140580

495 Reputation

8 Badges

4 years, 119 days

MaplePrimes Activity


These are questions asked by vs140580

Kind help to implement the attached flowchart

 

Finding_Detour_using_alorigthm.pdf

Given a graph G and a vertex v find the shortest self returning walk from that visits all vertices starts at v and comes back to v.

In the below graph the shortest self returning walk which visits all vertices and comes back to first to started vertex

A function which takes a graph G  and  vertex v as input and returns the length of the  shortest self returning walk of that vertex in the below example 10

 

I am sorry for the error i just saw the change after reading more in deep

 

For the vertex 7 the shortest self returning walk from that visits all vertices starts at 7 and comes back to 7 It is a walk so edges can repeat

 

The closed walk which passes through all vertices minimum from vertex 7 is so length 10. is what it means

so it returns 10.

A function which takes a matrix as input and k the number of places to round to Given a matrix

 

Matrix(17, 17, [[0, 1.67136411, 3.04642520, 3.03792037, 4.46305818, 4.48953189, 11.44947182, 11.44363094, 5.99694026, 10.05030814, 10.04436470, 12.86806872, 12.86675621, 8.65792026, 11.48220112, 11.47942388, 10.13243670], [1.67136411, 0, 1.37506109, 1.36655626, 2.79169407, 2.81816777, 9.77810770, 9.77226682, 4.32557615, 8.37894403, 8.37300059, 11.19670460, 11.19539209, 6.98655615, 9.81083701, 9.80805976, 8.46107258], [3.04642520, 1.37506109, 0, 2.74161735, 1.41663298, 4.19322886, 8.40304661, 8.39720573, 5.70063724, 7.00388294, 6.99793950, 12.57176570, 12.57045318, 5.61149506, 11.18589810, 11.18312085, 9.83613367], [3.03792037, 1.36655626, 2.74161735, 0, 4.15825033, 1.45161152, 11.14466396, 11.13882308, 2.95901989, 9.74550028, 9.73955684, 9.83014835, 9.82883584, 8.35311240, 8.44428075, 8.44150350, 7.09451633], [4.46305818, 2.79169407, 1.41663298, 4.15825033, 0, 5.60986184, 6.98641363, 6.98057275, 7.11727022, 5.58724996, 5.58130652, 13.98839867, 13.98708616, 4.19486208, 12.60253107, 12.59975383, 11.25276665], [4.48953189, 2.81816777, 4.19322886, 1.45161152, 5.60986184, 0, 12.59627548, 12.59043460, 1.50740837, 11.19711180, 11.19116836, 8.37853683, 8.37722432, 9.80472392, 6.99266923, 6.98989199, 5.64290481], [11.44947182, 9.77810770, 8.40304661, 11.14466396, 6.98641363, 12.59627548, 0, 5.58361857, 14.10368385, 6.98420414, 4.19901549, 20.97481231, 20.97349980, 5.59181627, 19.58894471, 19.58616747, 18.23918029], [11.44363094, 9.77226682, 8.39720573, 11.13882308, 6.98057275, 12.59043460, 5.58361857, 0, 14.09784297, 4.19891293, 6.98410159, 20.96897143, 20.96765892, 5.59130081, 19.58310383, 19.58032659, 18.23333941], [5.99694026, 4.32557615, 5.70063724, 2.95901989, 7.11727022, 1.50740837, 14.10368385, 14.09784298, 0, 12.70452017, 12.69857674, 6.87112846, 6.86981595, 11.31213229, 5.48526086, 5.48248361, 4.13549644], [10.05030814, 8.37894403, 7.00388294, 9.74550028, 5.58724996, 11.19711180, 6.98420414, 4.19891293, 12.70452017, 0, 5.59817917, 19.57564863, 19.57433612, 6.99097994, 18.18978103, 18.18700379, 16.84001661], [10.04436470, 8.37300059, 6.99793950, 9.73955684, 5.58130652, 11.19116836, 4.19901549, 6.98410159, 12.69857673, 5.59817917, 0, 19.56970519, 19.56839268, 6.99056705, 18.18383759, 18.18106035, 16.83407317], [12.86806871, 11.19670460, 12.57176569, 9.83014835, 13.98839867, 8.37853683, 20.97481232, 20.96897144, 6.87112846, 19.57564864, 19.56970520, 0, 5.47162962, 18.18326076, 6.88344719, 4.18501750, 5.53368276], [12.86675620, 11.19539209, 12.57045318, 9.82883584, 13.98708616, 8.37722432, 20.97349980, 20.96765892, 6.86981595, 19.57433612, 19.56839268, 5.47162962, 0, 18.18194824, 4.18355276, 6.88198245, 5.53331719], [8.65792026, 6.98655615, 5.61149506, 8.35311240, 4.19486208, 9.80472392, 5.59181627, 5.59130081, 11.31213229, 6.99097994, 6.99056705, 18.18326075, 18.18194824, 0, 16.79739315, 16.79461591, 15.44762873], [11.48220112, 9.81083701, 11.18589810, 8.44428075, 12.60253108, 6.99266923, 19.58894472, 19.58310384, 5.48526086, 18.18978104, 18.18383760, 6.88344719, 4.18355276, 16.79739316, 0, 5.57088509, 6.91955036], [11.47942387, 9.80805976, 11.18312085, 8.44150350, 12.59975383, 6.98989199, 19.58616748, 19.58032660, 5.48248361, 18.18700380, 18.18106036, 4.18501750, 6.88198245, 16.79461592, 5.57088509, 0, 6.92064952], [10.13243670, 8.46107258, 9.83613367, 7.09451633, 11.25276665, 5.64290481, 18.23918030, 18.23333942, 4.13549644, 16.84001662, 16.83407318, 5.53368276, 5.53331719, 15.44762874, 6.91955036, 6.92064952, 0]])

 

Convert all the digits in the matrix to k decimal places where k I can specify After converting to decimal places it should not show zero's at the end of the decimal places. Kind help

Let L be a list like

L:=[[3, 2], [2, 1], [1, 2], [1, 2], [2, 3], [2, 1], [1, 2], [1, 1], [2, 1], [1, 2], [1, 1], [2, 1], [1, 1], [1, 3], [1, 2], [2, 1], [1, 3], [1, 3], [1, 3], [1, 2], [2, 2], [2, 3]]

Now we consider [3,1] and [1,3] as same 

First we form a list gives us 

Lk:=[[[1,3],4],[[1.2],11],[[2,3],3],[[2,2],1],[[1,1],3]]

That is [1,3] appears 4 times in L

[1,2] appears 11 times in L

[2,3] appears 3 times in L

[1,1] appears.3 times in L

[2,2] appears 1 times in L

now we do addtion in [1,3] which is 1+3=4 therefore [[1,3],4] become [4,4]

[2,2] becomes 2+2=4 therefore [[2,2],1] is [4,1]

[[1,2],11] become [3,11]

[[2,3],3] becomes [5,3]

[[1,1],3] becomes [2,3]

So new list is [[4,4],[3,11],[5,3],[2,3],[4,1]]

so answer is from [4,4] we get 4 *4 , from [3,11] we get 3*11 , from [5,3] we get 5*3 and from [2,3] we get 2*3 from [4,1] we get 4*1

final required answer is (4*4)*(3*11)*(5*3)*(2*3)*(4*1)  =190080

Any list L like above if given kind help with a function which can do the above operation and give the final answer that is in above case 190080

From a list of strings say

L:=[k$1,y$23,f$25,........]

A particular type of delimiter will their which is  common to all elements in the list the right side is always a number 

The function takes the list, and the delimiter as input

Then it outputs a list of 

Numbers which is on the right side of the delimiter 

Output will be like 

[1,23,25,...]

The delimiters could be a space 

Or 

Space on both sides of dollars

That is in understanding space should also be considered in delimiter that is anything significant 

3 4 5 6 7 8 9 Last Page 5 of 25