MaplePrimes Posts

MaplePrimes Posts are for sharing your experiences, techniques and opinions about Maple, MapleSim and related products, as well as general interests in math and computing.

Latest Post
  • Latest Posts Feed

  • Exact solutions to Einstein’s equations” is one of those books that are difficult even to imagine: the authors reviewed more than 4,000 papers containing solutions to Einstein’s equations in the general relativity literature, collecting, classifying, discarding repetitions in disguise, and organizing the whole material into chapters according to the physical properties of these solutions. The book is already in its second edition and it is a monumental piece of work.

     

    As good as it is, however, the project resulted only in printed material, a textbook constituted of paper and ink. In 2006, when the DifferentialGeometry package was rewritten to enter the Maple library, one of the first things that passed through our minds was to bring the whole of “Exact solutions to Einstein’s equations” into Maple.

     

    It took some time to start but in 2010, for Maple 14, we featured the first 26 solutions from this book. In Maple 15 this number jumped to 61. For Maple 17 we decided to emphasize the general relativity functionality of the DifferentialGeometry package, and Maple 18 added 50 more, featuring in total 225 of these solutions - great! but still far from the whole thing …

     

    And this is when we decided to “step on the gas” - go for it, the whole book. One year later, working in collaboration with Denitsa Staicova from Bulgarian Academy of Sciences, Maple 2015 appeared with 330 solutions to Einstein’s equations. Today we have already implemented 492 solutions, and for the first time we can see the end of the tunnel: we are targeting finishing the whole book by the end of this year.

     

    Wow2! This is a terrific result. First, because these solutions are key in the area of general relativity, and at this point what we have in Maple is already the most thorough digitized database of solutions to Einstein’s equations in the world. Second, and not any less important, because within Maple this knowledge comes alive. The solutions are fully searcheable and are set by a simple call to the Physics:-g_  spacetime metric command, and that automatically sets the related coordinates, Christoffel symbols , Ricci  and Riemann  tensors, orthonormal and null tetrads , etc. All of this happens on the fly, and all the mathematics within the Maple library are ready to work with these solutions. Having everything come alive completely changes the game. The ability to search the database according to the physical properties of the solutions, their classification, or just by parts of keywords also makes the whole book concretely more useful.

     

    And, not only are these solutions to Einstein’s equations brought to life in a full-featured way through the Physics  package: they can also be reached through the DifferentialGeometry:-Library:-MetricSearch  applet. Almost all of the mathematical operations one can perform on them are also implemented as commands in DifferentialGeometry .

     

    Finally, in the Maple PDEtools package , we already have all the mathematical tools to start resolving the equivalence problem around these solutions. That is: to answer whether a new solution is or not new, or whether it can be obtained from an existing solution by transformations of coordinates of different kinds. And we are going for it.

     

    What follows is a basic illustration of what has already been implemented. As usual, in order to reproduce these results, you need to update your Physics library from the Maplesoft R&D Physics webpage.

     

    Load Physics , set the metric to Schwarzschild (and everything else automatically) in one go

    with(Physics)

    g_[sc]

    `Systems of spacetime Coordinates are: `*{X = (r, theta, phi, t)}

     

    `Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (r, theta, phi, t)}

     

    `The Schwarzschild metric in coordinates `[r, theta, phi, t]

     

    `Parameters: `[m]

     

    g[mu, nu] = (Matrix(4, 4, {(1, 1) = r/(-r+2*m), (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = -r^2, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = -r^2*sin(theta)^2, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = (r-2*m)/r}))

    (1)

    And that is all we do :) Although the strength in Physics  is to compute with tensors using indicial notation, all of the tensor components and related properties of this metric are also derived on the fly (and no, they are not in any database). For instance these are the definition in terms of Christoffel symbols , and the covariant components of the Ricci tensor

    Ricci[definition]

    Physics:-Ricci[mu, nu] = Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-d_[nu](Physics:-Christoffel[`~alpha`, mu, alpha], [X])+Physics:-Christoffel[`~beta`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, alpha]-Physics:-Christoffel[`~beta`, mu, alpha]*Physics:-Christoffel[`~alpha`, nu, beta]

    (2)

    Ricci[]

    Physics:-Ricci[mu, nu] = Matrix(%id = 18446744078179871670)

    (3)

    These are the 16 Riemann invariants  for Schwarzschild solution, using the formulas by Carminati and McLenaghan

    Riemann[invariants]

    r[0] = 0, r[1] = 0, r[2] = 0, r[3] = 0, w[1] = 6*m^2/r^6, w[2] = 6*m^3/r^9, m[1] = 0, m[2] = 0, m[3] = 0, m[4] = 0, m[5] = 0

    (4)

    The related Weyl scalars  in the context of the Newman-Penrose formalism

    Weyl[scalars]

    psi__0 = 0, psi__1 = 0, psi__2 = -m/r^3, psi__3 = 0, psi__4 = 0

    (5)

     

    These are the 2x2 matrix components of the Christoffel symbols of the second kind (that describe, in coordinates, the effects of parallel transport in curved surfaces), when the first of its three indices is equal to 1

    "Christoffel[~1,alpha,beta,matrix]"

    Physics:-Christoffel[`~1`, alpha, beta] = Matrix(%id = 18446744078160684686)

    (6)

    In Physics, the Christoffel symbols of the first kind are represented by the same object (not two commands) just by taking the first index covariant, as we do when computing with paper and pencil

    Christoffel[1, alpha, beta, matrix]

    Physics:-Christoffel[1, alpha, beta] = Matrix(%id = 18446744078160680590)

    (7)

    One could query the database, directly from the spacetime metrics, about the solutions (metrics) to Einstein's equations related to Levi-Civita, the Italian mathematician

    g_[civi]

    ____________________________________________________________

     

    [12, 16, 1] = ["Authors" = ["Bertotti (1959)", "Kramer (1978)", "Levi-Civita (1917)", "Robinson (1959)"], "PrimaryDescription" = "EinsteinMaxwell", "SecondaryDescription" = ["Homogeneous"]]

     

    ____________________________________________________________

     

    [12, 18, 1] = ["Authors" = ["Bertotti (1959)", "Kramer (1978)", "Levi-Civita (1917)", "Robinson (1959)"], "PrimaryDescription" = "EinsteinMaxwell", "SecondaryDescription" = ["Homogeneous"]]

     

    ____________________________________________________________

     

    [12, 19, 1] = ["Authors" = ["Bertotti (1959)", "Kramer (1978)", "Levi-Civita (1917)", "Robinson (1959)"], "PrimaryDescription" = "EinsteinMaxwell", "SecondaryDescription" = ["Homogeneous"]]

    (8)

    These solutions can be set in one go from the metrics command, just by indicating the number with which it appears in "Exact Solutions to Einstein's Equations"

    g_[[12, 16, 1]]

    `Systems of spacetime Coordinates are: `*{X = (t, x, theta, phi)}

     

    `Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (t, x, theta, phi)}

     

    `The Bertotti (1959), Kramer (1978), Levi-Civita (1917), Robinson (1959) metric in coordinates `[t, x, theta, phi]

     

    `Parameters: `[k, kappa0, beta]

     

    g[mu, nu] = (Matrix(4, 4, {(1, 1) = -k^2*sinh(x)^2, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = k^2, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = k^2, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = k^2*sin(theta)^2}))

    (9)

    Automatically, everything gets set accordingly; these are the contravariant components of the related Ricci tensor

    "Ricci[~]"

    Physics:-Ricci[`~mu`, `~nu`] = Matrix(%id = 18446744078179869750)

    (10)

    One works with the Newman-Penrose formalism frequently using tetrads (local system of references); the Physics subpackage for this is Tetrads

    with(Tetrads)

    `Setting lowercaselatin letters to represent tetrad indices `

     

    0, "%1 is not a command in the %2 package", Tetrads, Physics

     

    0, "%1 is not a command in the %2 package", Tetrads, Physics

     

    [IsTetrad, NullTetrad, OrthonormalTetrad, SimplifyTetrad, TransformTetrad, e_, eta_, gamma_, l_, lambda_, m_, mb_, n_]

    (11)

    This is the tetrad related to the book's metric with number 12.16.1

    e_[]

    Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078160685286)

    (12)

    One can check these directly; for instance this is the definition of the tetrad, where the right-hand side is the tetrad metric

    e_[definition]

    Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[b, `~mu`] = Physics:-Tetrads:-eta_[a, b]

    (13)

    This shows that, for the components given by (12), the definition holds

    TensorArray(Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[b, `~mu`] = Physics:-Tetrads:-eta_[a, b])

    Matrix(%id = 18446744078195401422)

    (14)

    One frequently works with a different signature and null tetrads; set that, and everything gets automatically recomputed for the metric 12.16.1 accordingly

    Setup(signature = "+---", tetradmetric = null)

    [signature = `+ - - -`, tetradmetric = {(1, 2) = 1, (3, 4) = -1}]

    (15)

    eta_[]

    eta[a, b] = (Matrix(4, 4, {(1, 1) = 0, (1, 2) = 1, (1, 3) = 0, (1, 4) = 0, (2, 1) = 1, (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = -1, (4, 1) = 0, (4, 2) = 0, (4, 3) = -1, (4, 4) = 0}))

    (16)

    e_[]

    Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078191417574)

    (17)

    TensorArray(Physics:-Tetrads:-e_[a, mu]*Physics:-Tetrads:-e_[b, `~mu`] = Physics:-Tetrads:-eta_[a, b])

    Matrix(%id = 18446744078191319390)

    (18)

    The related 16 Riemann invariant

    Riemann[invariants]

    r[0] = 0, r[1] = 1/k^4, r[2] = 0, r[3] = (1/4)/k^8, w[1] = 0, w[2] = 0, m[1] = 0, m[2] = 0, m[3] = 0, m[4] = 0, m[5] = 0

    (19)

    The ability to query rapidly, set things in one go, change everything again etc. are at this point fantastic. For instance, these are the metrics by Kaigorodov; next are those published in 1962

    g_[Kaigorodov]

    ____________________________________________________________

     

    [12, 34, 1] = ["Authors" = ["Kaigorodov (1962)", "Cahen (1964)", "Siklos (1981)", "Ozsvath (1987)"], "PrimaryDescription" = "Einstein", "SecondaryDescription" = ["Homogeneous"], "Comments" = ["All metrics with _epsilon <> 0 are equivalent to the cases _epsilon = +1, -1, _epsilon = 0 is anti-deSitter space"]]

     

    ____________________________________________________________

     

    [12, 35, 1] = ["Authors" = ["Kaigorodov (1962)", "Cahen (1964)", "Siklos (1981)", "Ozsvath (1987)"], "PrimaryDescription" = "Einstein", "SecondaryDescription" = ["Homogeneous", "SimpleTransitive"]]

    (20)

    g_[`1962`]

    ____________________________________________________________

     

    [12, 13, 1] = ["Authors" = ["Ozsvath, Schucking (1962)"], "PrimaryDescription" = "Vacuum", "SecondaryDescription" = ["Homogeneous", "PlaneWave"], "Comments" = ["geodesically complete, no curvature singularities"]]

     

    ____________________________________________________________

     

    [12, 14, 1] = ["Authors" = ["Petrov (1962)"], "PrimaryDescription" = "Vacuum", "SecondaryDescription" = ["Homogeneous", "SimpleTransitive"]]

     

    ____________________________________________________________

     

    [12, 34, 1] = ["Authors" = ["Kaigorodov (1962)", "Cahen (1964)", "Siklos (1981)", "Ozsvath (1987)"], "PrimaryDescription" = "Einstein", "SecondaryDescription" = ["Homogeneous"], "Comments" = ["All metrics with _epsilon <> 0 are equivalent to the cases _epsilon = +1, -1, _epsilon = 0 is anti-deSitter space"]]

     

    ____________________________________________________________

     

    [12, 35, 1] = ["Authors" = ["Kaigorodov (1962)", "Cahen (1964)", "Siklos (1981)", "Ozsvath (1987)"], "PrimaryDescription" = "Einstein", "SecondaryDescription" = ["Homogeneous", "SimpleTransitive"]]

     

    ____________________________________________________________

     

    [28, 16, 1] = ["Authors" = ["Robinson-Trautman (1962)"], "PrimaryDescription" = "Vacuum", "SecondaryDescription" = ["RobinsonTrautman"], "Comments" = ["The coordinate zeta is changed to xi", "AlternativeOrthonormalTetrad1 and AlternativeNullTetrad1 are adapted to the shear-free null geodesic congruence (Robinson-Trautman tetrads)"]]

     

    ____________________________________________________________

     

    [28, 26, 1] = ["Authors" = ["Robinson, Trautman (1962)"], "PrimaryDescription" = "Vacuum", "SecondaryDescription" = ["RobinsonTrautman"], "Comments" = ["One can use the diffeo r -> -r and u -> -u to make the assumption r > 0", "The case _m = 0 is Stephani, [28, 16,1]", "The metric is type D at points where r = 3*_m/(xi1+xi2) and type II on either side of this hypersurface. For convenience, it is assumed that 3*_m  - r*(xi1 + xi2) > 0", "AlternativeOrthonormalTetrad1 and AlternativeNullTetrad1 are adapted to the shear-free null geodesic congruence (Robinson-Trautman tetrads)"]]

     

    ____________________________________________________________

     

    [28, 26, 2] = ["Authors" = ["Robinson, Trautman (1962)"], "PrimaryDescription" = "Vacuum", "SecondaryDescription" = ["RobinsonTrautman"], "Comments" = ["One can use the diffeo r -> -r and u -> -u to make the assumption r > 0", "The case _m = 0 is Stephani, [28, 16,1].", "AlternativeOrthonormalTetrad1 and AlternativeNullTetrad1 are adapted to the shear-free null geodesic congruence (Robinson-Trautman tetrads)"]]

     

    ____________________________________________________________

     

    [28, 26, 3] = ["Authors" = ["Robinson, Trautman (1962)"], "PrimaryDescription" = "Vacuum", "SecondaryDescription" = ["RobinsonTrautman"], "Comments" = ["One can use the diffeo r -> -r and u -> -u to make the assumption r > 0", "The case _m = 0 is Stephani, [28, 16,1].", "AlternativeOrthonormalTetrad1 and AlternativeNullTetrad1 are adapted to the shear-free null geodesic congruence (Robinson-Trautman tetrads)"]]

     

    ____________________________________________________________

     

    [28, 43, 1] = ["Authors" = ["Robinson, Trautman (1962)"], "PrimaryDescription" = "EinsteinMaxwell", "SecondaryDescription" = ["PureRadiation", "RobinsonTrautman"], "Comments" = ["h1(u) is the conjugate of h(u)"]]

    (21)

     

    The search can be done visually, by properties; this is the only solution in the database that is a Pure Ratiation solution, of Petrov Type "D", Plebanski-Petrov Type "O" and that has Isometry Dimension equal to 1:

    DifferentialGeometry:-Library:-MetricSearch()

     

    Set the solution, and everything related to work with it, in one go

    g_[[28, 74, 1]]

    `Systems of spacetime Coordinates are: `*{X = (u, eta, r, y)}

     

    `Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (u, eta, r, y)}

     

    `The Frolov and Khlebnikov (1975) metric in coordinates `[u, eta, r, y]

     

    `Parameters: `[kappa0, m(u), b, d]

     

    "`Comments: `With _m(u) = constant, the metric is Ricci flat and becomes 28.24 in Stephani."

     

    g[mu, nu] = (Matrix(4, 4, {(1, 1) = (2*m(u)^3-6*m(u)^2*eta*r-r^2*(-6*eta^2+b)*m(u)+r^3*(-2*eta^3+b*eta+d))/(r*m(u)^2), (1, 2) = -r^2/m(u), (1, 3) = -1, (1, 4) = 0, (2, 1) = -r^2/m(u), (2, 2) = r^2/(-2*eta^3+b*eta+d), (2, 3) = 0, (2, 4) = 0, (3, 1) = -1, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = r^2*(-2*eta^3+b*eta+d)}))

    (22)

     

    The related Riemann invariants:

    Riemann[invariants]

    r[0] = 0, r[1] = 0, r[2] = 0, r[3] = 0, w[1] = 6*m(u)^2/r^6, w[2] = -6*m(u)^3/r^9, m[1] = 0, m[2] = 0, m[3] = 0, m[4] = 0, m[5] = 0

    (23)

    To conclude, how many solutions from the book have we already implemented?

    DifferentialGeometry:-Library:-Retrieve("Stephani", 1)

    [[8, 33, 1], [8, 34, 1], [12, 6, 1], [12, 7, 1], [12, 8, 1], [12, 8, 2], [12, 8, 3], [12, 8, 4], [12, 8, 5], [12, 8, 6], [12, 8, 7], [12, 8, 8], [12, 9, 1], [12, 9, 2], [12, 9, 3], [12, 12, 1], [12, 12, 2], [12, 12, 3], [12, 12, 4], [12, 13, 1], [12, 14, 1], [12, 16, 1], [12, 18, 1], [12, 19, 1], [12, 21, 1], [12, 23, 1], [12, 23, 2], [12, 23, 3], [12, 24.1, 1], [12, 24.2, 1], [12, 24.3, 1], [12, 26, 1], [12, 27, 1], [12, 28, 1], [12, 29, 1], [12, 30, 1], [12, 31, 1], [12, 32, 1], [12, 34, 1], [12, 35, 1], [12, 36, 1], [12, 37, 1], [12, 37, 2], [12, 37, 3], [12, 37, 4], [12, 37, 5], [12, 37, 6], [12, 37, 7], [12, 37, 8], [12, 37, 9], [12, 38, 1], [12, 38, 2], [12, 38, 3], [12, 38, 4], [12, 38, 5], [13, 2, 1], [13, 2, 2], [13, 2, 3], [13, 7, 1], [13, 7, 2], [13, 7, 3], [13, 7, 4], [13, 7, 5], [13, 7, 6], [13, 7, 7], [13, 7, 8], [13, 14, 1], [13, 14, 2], [13, 14, 3], [13, 19, 1], [13, 31, 1], [13, 32, 1], [13, 46, 1], [13, 48, 1], [13, 49, 1], [13, 49, 2], [13, 51, 1], [13, 53, 1], [13, 59, 1], [13, 59, 2], [13, 60, 1], [13, 60, 2], [13, 60, 3], [13, 60, 4], [13, 60, 5], [13, 60, 6], [13, 60, 7], [13, 60, 8], [13, 61, 1], [13, 61, 2], [13, 62, 1], [13, 62, 2], [13, 62, 4], [13, 62, 6], [13, 63, 1], [13, 63, 2], [13, 63, 3], [13, 63, 4], [13, 64, 1], [13, 64, 2], [13, 64, 3], [13, 64, 4], [13, 65, 1], [13, 69, 1], [13, 71, 1], [13, 72, 1], [13, 73, 1], [13, 74, 1], [13, 74, 2], [13, 74, 3], [13, 76, 1], [13, 77, 1], [13, 77, 2], [13, 79, 1], [13, 79, 2], [13, 80, 1], [13, 81, 1], [13, 83, 1], [13, 84, 1], [13, 84, 2], [13, 84, 3], [13, 85, 1], [13, 85, 2], [13, 86, 1], [13, 87, 1], [14, 6.1, 1], [14, 6.2, 1], [14, 6.3, 1], [14, 7, 1], [14, 8.1, 1], [14, 8.2, 1], [14, 8.3, 1], [14, 9.1, 1], [14, 9.2, 1], [14, 10, 1], [14, 10, 2], [14, 12, 1], [14, 12, 2], [14, 12, 3], [14, 14, 1], [14, 14, 2], [14, 15, 1], [14, 15.1, 2], [14, 15.2, 2], [14, 15.3, 2], [14, 16, 1], [14, 16, 2], [14, 17, 1], [14, 18, 1], [14, 18, 2], [14, 19, 1], [14, 20, 1], [14, 21, 1], [14, 21, 2], [14, 21, 3], [14, 22, 1], [14, 23, 1], [14, 24, 1], [14, 25, 1], [14, 26, 1], [14, 26, 2], [14, 26, 3], [14, 26, 4], [14, 27, 1], [14, 28, 1], [14, 28, 2], [14, 28, 3], [14, 29, 1], [14, 30, 1], [14, 31, 1], [14, 32, 1], [14, 33, 1], [14, 35, 1], [14, 37, 1], [14, 38, 1], [14, 38, 2], [14, 38, 3], [14, 39, 1], [14, 39, 2], [14, 39, 3], [14, 39, 4], [14, 39, 5], [14, 39, 6], [14, 40, 1], [14, 41, 1], [14, 42, 1], [14, 46, 1], [15, 3, 1], [15, 3, 2], [15, 4, 1], [15, 4, 2], [15, 4, 3], [15, 9, 1], [15, 10, 1], [15, 12, 1], [15, 12, 2], [15, 12, 3], [15, 12, 4], [15, 12, 5], [15, 12, 6], [15, 17, 1], [15, 17, 2], [15, 17, 3], [15, 17, 4], [15, 18, 1], [15, 19, 1], [15, 19, 2], [15, 20, 1], [15, 21, 1], [15, 21, 2], [15, 22, 1], [15, 23, 1], [15, 23, 2], [15, 24, 1], [15, 24, 2], [15, 25, 1], [15, 25, 2], [15, 26, 1], [15, 26, 2], [15, 27, 1], [15, 27, 2], [15, 27, 3], [15, 27, 4], [15, 27, 5], [15, 27, 6], [15, 27, 7], [15, 27, 8], [15, 28, 1], [15, 29, 1], [15, 30, 1], [15, 31, 1], [15, 32, 1], [15, 34, 1], [15, 34, 2], [15, 34, 3], [15, 43, 1], [15, 43, 2], [15, 43, 3], [15, 50, 1], [15, 50, 2], [15, 50, 3], [15, 50, 4], [15, 50, 5], [15, 50, 6], [15, 62, 1], [15, 62, 2], [15, 62, 3], [15, 63, 1], [15, 63, 2], [15, 63, 3], [15, 65, 1], [15, 65, 2], [15, 66, 1], [15, 66, 2], [15, 66, 3], [15, 75, 1], [15, 75, 2], [15, 75, 3], [15, 77, 1], [15, 77, 2], [15, 77, 3], [15, 78, 1], [15, 79, 1], [15, 81, 1], [15, 81, 2], [15, 81, 3], [15, 82, 1], [15, 82, 2], [15, 82, 3], [15, 83, 1.1], [15, 83, 1.2], [15, 83, 2], [15, 83, 3.1], [15, 83, 3.2], [15, 83, 4], [15, 84, 1], [15, 85, 1], [15, 85, 2], [15, 85, 3], [15, 86, 1], [15, 86, 2], [15, 86, 3], [15, 87, 1], [15, 87, 2], [15, 87, 3], [15, 87, 4], [15, 87, 5], [15, 88, 1], [15, 89, 1], [15, 90, 1], [16, 1, 1], [16, 1, 2], [16, 1, 3], [16, 1, 4], [16, 1, 5], [16, 1, 6], [16, 1, 7], [16, 1, 8], [16, 1, 9], [16, 1, 10], [16, 1, 11], [16, 1, 12], [16, 1, 13], [16, 1, 14], [16, 1, 15], [16, 1, 16], [16, 1, 17], [16, 1, 18], [16, 1, 19], [16, 1, 20], [16, 1, 21], [16, 1, 22], [16, 1, 23], [16, 1, 24], [16, 1, 25], [16, 1, 26], [16, 1, 27], [16, 14, 1], [16, 14, 2], [16, 14, 3], [16, 14, 4], [16, 14, 5], [16, 14, 6], [16, 14, 7], [16, 14, 8], [16, 14, 9], [16, 14, 10], [16, 14, 11], [16, 14, 12], [16, 14, 13], [16, 14, 14], [16, 14, 15], [16, 14, 16], [16, 14, 17], [16, 14, 18], [16, 14, 19], [16, 14, 20], [16, 18, 1], [16, 19, 1], [16, 20, 1], [16, 22, 1], [16, 24, 1], [16, 24, 2], [16, 43, 1], [16, 45, 1], [16, 45, 2], [16, 46, 1], [16, 47, 1], [16, 50, 1], [16, 51, 1], [16, 54, 1], [16, 61, 1], [16, 63, 1], [16, 66, 1], [16, 66, 2], [16, 66, 3], [16, 67, 1], [16, 71, 1], [16, 72, 1], [16, 73, 1], [16, 74, 1], [16, 75, 1], [16, 76, 1], [16, 77, 1], [16, 77, 2], [16, 77, 3], [16, 78, 1], [17, 4, 1], [17, 4, 2], [17, 5, 1], [17, 9, 1], [17, 14, 1], [17, 15, 1], [17, 15, 2], [17, 16, 1], [17, 20, 1], [17, 22, 1], [17, 23, 1], [17, 24, 1], [17, 24, 2], [17, 26, 1], [17, 27, 1], [17, 27, 2], [17, 28, 1], [17, 28, 2], [17, 29, 1], [17, 29, 2], [17, 30, 1], [17, 31, 1], [18, 2, 1], [18, 2, 2], [18, 2, 3], [18, 2, 4], [18, 2, 5], [18, 2, 6], [18, 2, 7], [18, 2, 8], [18, 48, 1], [18, 48, 2], [18, 49, 1], [18, 50, 1], [18, 64, 1], [18, 64, 2], [18, 64, 3], [18, 65, 1], [18, 66, 1], [18, 67, 1], [18, 71, 1], [18, 75, 1], [19, 17, 1], [19, 17, 2], [19, 21, 1], [20, 3, 1], [20, 4, 1], [20, 5, 1], [20, 7, 1], [20, 8, 1], [20, 9, 1], [20, 10, 1], [20, 11, 1], [20, 12, 1], [20, 13, 1], [20, 15, 1], [20, 16, 1], [20, 17, 1], [20, 20, 1], [20, 21, 1], [20, 23, 1], [20, 27, 1], [20, 28, 1], [20, 29, 1], [20, 32, 1], [20, 34, 1], [20, 36, 1], [20, 38, 1], [20, 38, 2], [20, 38, 3], [20, 44, 1], [20, 46, 1], [20, 54, 1], [20, 57, 1], [20, 57, 2], [28, 16, 1], [28, 17, 1], [28, 21, 1], [28, 21, 2], [28, 21, 3], [28, 21, 4], [28, 21, 5], [28, 21, 6], [28, 21, 7], [28, 24, 1], [28, 25, 1], [28, 26, 1], [28, 26, 2], [28, 26, 3], [28, 41, 1], [28, 43, 1], [28, 44, 1], [28, 44, 2], [28, 44, 3], [28, 44, 4], [28, 44, 5], [28, 44, 6], [28, 45, 1], [28, 45, 2], [28, 46, 1], [28, 46, 2], [28, 53, 1], [28, 53, 2], [28, 55, 1], [28, 55, 2], [28, 56.1, 1], [28, 56.2, 2], [28, 56.2, 3], [28, 56.3, 1], [28, 56.4, 1], [28, 56.5, 1], [28, 56.6, 1], [28, 58.2, 1], [28, 58.3, 1], [28, 58.3, 2], [28, 58.4, 1], [28, 60, 1], [28, 61, 1], [28, 64, 1], [28, 66, 1], [28, 67, 1], [28, 68, 1], [28, 72, 1], [28, 73, 1], [28, 74, 1]]

    (24)

    nops([[8, 33, 1], [8, 34, 1], [12, 6, 1], [12, 7, 1], [12, 8, 1], [12, 8, 2], [12, 8, 3], [12, 8, 4], [12, 8, 5], [12, 8, 6], [12, 8, 7], [12, 8, 8], [12, 9, 1], [12, 9, 2], [12, 9, 3], [12, 12, 1], [12, 12, 2], [12, 12, 3], [12, 12, 4], [12, 13, 1], [12, 14, 1], [12, 16, 1], [12, 18, 1], [12, 19, 1], [12, 21, 1], [12, 23, 1], [12, 23, 2], [12, 23, 3], [12, 24.1, 1], [12, 24.2, 1], [12, 24.3, 1], [12, 26, 1], [12, 27, 1], [12, 28, 1], [12, 29, 1], [12, 30, 1], [12, 31, 1], [12, 32, 1], [12, 34, 1], [12, 35, 1], [12, 36, 1], [12, 37, 1], [12, 37, 2], [12, 37, 3], [12, 37, 4], [12, 37, 5], [12, 37, 6], [12, 37, 7], [12, 37, 8], [12, 37, 9], [12, 38, 1], [12, 38, 2], [12, 38, 3], [12, 38, 4], [12, 38, 5], [13, 2, 1], [13, 2, 2], [13, 2, 3], [13, 7, 1], [13, 7, 2], [13, 7, 3], [13, 7, 4], [13, 7, 5], [13, 7, 6], [13, 7, 7], [13, 7, 8], [13, 14, 1], [13, 14, 2], [13, 14, 3], [13, 19, 1], [13, 31, 1], [13, 32, 1], [13, 46, 1], [13, 48, 1], [13, 49, 1], [13, 49, 2], [13, 51, 1], [13, 53, 1], [13, 59, 1], [13, 59, 2], [13, 60, 1], [13, 60, 2], [13, 60, 3], [13, 60, 4], [13, 60, 5], [13, 60, 6], [13, 60, 7], [13, 60, 8], [13, 61, 1], [13, 61, 2], [13, 62, 1], [13, 62, 2], [13, 62, 4], [13, 62, 6], [13, 63, 1], [13, 63, 2], [13, 63, 3], [13, 63, 4], [13, 64, 1], [13, 64, 2], [13, 64, 3], [13, 64, 4], [13, 65, 1], [13, 69, 1], [13, 71, 1], [13, 72, 1], [13, 73, 1], [13, 74, 1], [13, 74, 2], [13, 74, 3], [13, 76, 1], [13, 77, 1], [13, 77, 2], [13, 79, 1], [13, 79, 2], [13, 80, 1], [13, 81, 1], [13, 83, 1], [13, 84, 1], [13, 84, 2], [13, 84, 3], [13, 85, 1], [13, 85, 2], [13, 86, 1], [13, 87, 1], [14, 6.1, 1], [14, 6.2, 1], [14, 6.3, 1], [14, 7, 1], [14, 8.1, 1], [14, 8.2, 1], [14, 8.3, 1], [14, 9.1, 1], [14, 9.2, 1], [14, 10, 1], [14, 10, 2], [14, 12, 1], [14, 12, 2], [14, 12, 3], [14, 14, 1], [14, 14, 2], [14, 15, 1], [14, 15.1, 2], [14, 15.2, 2], [14, 15.3, 2], [14, 16, 1], [14, 16, 2], [14, 17, 1], [14, 18, 1], [14, 18, 2], [14, 19, 1], [14, 20, 1], [14, 21, 1], [14, 21, 2], [14, 21, 3], [14, 22, 1], [14, 23, 1], [14, 24, 1], [14, 25, 1], [14, 26, 1], [14, 26, 2], [14, 26, 3], [14, 26, 4], [14, 27, 1], [14, 28, 1], [14, 28, 2], [14, 28, 3], [14, 29, 1], [14, 30, 1], [14, 31, 1], [14, 32, 1], [14, 33, 1], [14, 35, 1], [14, 37, 1], [14, 38, 1], [14, 38, 2], [14, 38, 3], [14, 39, 1], [14, 39, 2], [14, 39, 3], [14, 39, 4], [14, 39, 5], [14, 39, 6], [14, 40, 1], [14, 41, 1], [14, 42, 1], [14, 46, 1], [15, 3, 1], [15, 3, 2], [15, 4, 1], [15, 4, 2], [15, 4, 3], [15, 9, 1], [15, 10, 1], [15, 12, 1], [15, 12, 2], [15, 12, 3], [15, 12, 4], [15, 12, 5], [15, 12, 6], [15, 17, 1], [15, 17, 2], [15, 17, 3], [15, 17, 4], [15, 18, 1], [15, 19, 1], [15, 19, 2], [15, 20, 1], [15, 21, 1], [15, 21, 2], [15, 22, 1], [15, 23, 1], [15, 23, 2], [15, 24, 1], [15, 24, 2], [15, 25, 1], [15, 25, 2], [15, 26, 1], [15, 26, 2], [15, 27, 1], [15, 27, 2], [15, 27, 3], [15, 27, 4], [15, 27, 5], [15, 27, 6], [15, 27, 7], [15, 27, 8], [15, 28, 1], [15, 29, 1], [15, 30, 1], [15, 31, 1], [15, 32, 1], [15, 34, 1], [15, 34, 2], [15, 34, 3], [15, 43, 1], [15, 43, 2], [15, 43, 3], [15, 50, 1], [15, 50, 2], [15, 50, 3], [15, 50, 4], [15, 50, 5], [15, 50, 6], [15, 62, 1], [15, 62, 2], [15, 62, 3], [15, 63, 1], [15, 63, 2], [15, 63, 3], [15, 65, 1], [15, 65, 2], [15, 66, 1], [15, 66, 2], [15, 66, 3], [15, 75, 1], [15, 75, 2], [15, 75, 3], [15, 77, 1], [15, 77, 2], [15, 77, 3], [15, 78, 1], [15, 79, 1], [15, 81, 1], [15, 81, 2], [15, 81, 3], [15, 82, 1], [15, 82, 2], [15, 82, 3], [15, 83, 1.1], [15, 83, 1.2], [15, 83, 2], [15, 83, 3.1], [15, 83, 3.2], [15, 83, 4], [15, 84, 1], [15, 85, 1], [15, 85, 2], [15, 85, 3], [15, 86, 1], [15, 86, 2], [15, 86, 3], [15, 87, 1], [15, 87, 2], [15, 87, 3], [15, 87, 4], [15, 87, 5], [15, 88, 1], [15, 89, 1], [15, 90, 1], [16, 1, 1], [16, 1, 2], [16, 1, 3], [16, 1, 4], [16, 1, 5], [16, 1, 6], [16, 1, 7], [16, 1, 8], [16, 1, 9], [16, 1, 10], [16, 1, 11], [16, 1, 12], [16, 1, 13], [16, 1, 14], [16, 1, 15], [16, 1, 16], [16, 1, 17], [16, 1, 18], [16, 1, 19], [16, 1, 20], [16, 1, 21], [16, 1, 22], [16, 1, 23], [16, 1, 24], [16, 1, 25], [16, 1, 26], [16, 1, 27], [16, 14, 1], [16, 14, 2], [16, 14, 3], [16, 14, 4], [16, 14, 5], [16, 14, 6], [16, 14, 7], [16, 14, 8], [16, 14, 9], [16, 14, 10], [16, 14, 11], [16, 14, 12], [16, 14, 13], [16, 14, 14], [16, 14, 15], [16, 14, 16], [16, 14, 17], [16, 14, 18], [16, 14, 19], [16, 14, 20], [16, 18, 1], [16, 19, 1], [16, 20, 1], [16, 22, 1], [16, 24, 1], [16, 24, 2], [16, 43, 1], [16, 45, 1], [16, 45, 2], [16, 46, 1], [16, 47, 1], [16, 50, 1], [16, 51, 1], [16, 54, 1], [16, 61, 1], [16, 63, 1], [16, 66, 1], [16, 66, 2], [16, 66, 3], [16, 67, 1], [16, 71, 1], [16, 72, 1], [16, 73, 1], [16, 74, 1], [16, 75, 1], [16, 76, 1], [16, 77, 1], [16, 77, 2], [16, 77, 3], [16, 78, 1], [17, 4, 1], [17, 4, 2], [17, 5, 1], [17, 9, 1], [17, 14, 1], [17, 15, 1], [17, 15, 2], [17, 16, 1], [17, 20, 1], [17, 22, 1], [17, 23, 1], [17, 24, 1], [17, 24, 2], [17, 26, 1], [17, 27, 1], [17, 27, 2], [17, 28, 1], [17, 28, 2], [17, 29, 1], [17, 29, 2], [17, 30, 1], [17, 31, 1], [18, 2, 1], [18, 2, 2], [18, 2, 3], [18, 2, 4], [18, 2, 5], [18, 2, 6], [18, 2, 7], [18, 2, 8], [18, 48, 1], [18, 48, 2], [18, 49, 1], [18, 50, 1], [18, 64, 1], [18, 64, 2], [18, 64, 3], [18, 65, 1], [18, 66, 1], [18, 67, 1], [18, 71, 1], [18, 75, 1], [19, 17, 1], [19, 17, 2], [19, 21, 1], [20, 3, 1], [20, 4, 1], [20, 5, 1], [20, 7, 1], [20, 8, 1], [20, 9, 1], [20, 10, 1], [20, 11, 1], [20, 12, 1], [20, 13, 1], [20, 15, 1], [20, 16, 1], [20, 17, 1], [20, 20, 1], [20, 21, 1], [20, 23, 1], [20, 27, 1], [20, 28, 1], [20, 29, 1], [20, 32, 1], [20, 34, 1], [20, 36, 1], [20, 38, 1], [20, 38, 2], [20, 38, 3], [20, 44, 1], [20, 46, 1], [20, 54, 1], [20, 57, 1], [20, 57, 2], [28, 16, 1], [28, 17, 1], [28, 21, 1], [28, 21, 2], [28, 21, 3], [28, 21, 4], [28, 21, 5], [28, 21, 6], [28, 21, 7], [28, 24, 1], [28, 25, 1], [28, 26, 1], [28, 26, 2], [28, 26, 3], [28, 41, 1], [28, 43, 1], [28, 44, 1], [28, 44, 2], [28, 44, 3], [28, 44, 4], [28, 44, 5], [28, 44, 6], [28, 45, 1], [28, 45, 2], [28, 46, 1], [28, 46, 2], [28, 53, 1], [28, 53, 2], [28, 55, 1], [28, 55, 2], [28, 56.1, 1], [28, 56.2, 2], [28, 56.2, 3], [28, 56.3, 1], [28, 56.4, 1], [28, 56.5, 1], [28, 56.6, 1], [28, 58.2, 1], [28, 58.3, 1], [28, 58.3, 2], [28, 58.4, 1], [28, 60, 1], [28, 61, 1], [28, 64, 1], [28, 66, 1], [28, 67, 1], [28, 68, 1], [28, 72, 1], [28, 73, 1], [28, 74, 1]])

    492

    (25)

    NULL

    :)



    Download Exact_Solutions_to_Einstein_Equations.mw

    Edgardo S. Cheb-Terrab
    Physics, Differential Equations and Mathematical Functions, Maplesoft

    The engineering design process involves numerous steps that allow the engineer to reach his/her final design objectives to the best of his/her ability. This process is akin to creating a fine sculpture or a great painting where different approaches are explored and tested, then either adopted or abandoned in favor of better or more developed and fine-tuned ones. Consider the x-ray of an oil painting. X-rays of the works of master artists reveal the thought and creative processes of their minds as they complete the work. I am sure that some colleagues may disagree with the comparison of our modern engineering designs to art masterpieces, but let me ask you to explore the innovations and their brilliant forms, and maybe you will agree with me even a little bit.

    Design Process

    Successful design engineers must have the very best craft, knowledge and experience to generate work that is truly worthy of being incorporated in products that sell in the tens, or even hundreds, of millions. This is presently achieved by having cross-functional teams of engineers work on a design, allowing cross checking and several rounds of reviews, followed by multiple prototypes and exhaustive preproduction testing until the team reaches a collective conclusion that “we have a design.” This is then followed by the final design review and release of the product. This necessary and vital approach is clearly a time consuming and costly process. Over the years I have asked myself several times, “Did I explore every single detail of the design fully”? “Am I sure that this is the very best I can do?” And more importantly, “Does every component have the most fine-tuned value to render the best performance possible?” And invariably I am left with a bit of doubt. That brings me to a tool that has helped me in this regard.

    A Great New Tool

    I have used Maple for over 25 years to dig deeply into my designs and understand the interplay between a given set of parameters and the performance of the particular circuit I am working on. This has always given me a complete view of the problem at hand and solidly pointed me in the direction of the best possible solutions.

    In recent years, a new feature called “Explore” has been added to Maple. This amazing feature allows the engineer/researcher to peer very deeply into any formula and explore the interaction of EVERY variable in the formula. 

    Take for example the losses in the control MOSFET in a synchronous buck converter. In order to minimize these losses and maximize the power conversion efficiency, the most suitable MOSFET must be selected. With thousands of these devices being available in the market, a dozen of them are considered very close to the best at any given time. The real question then is, which one is really the very best amongst all of them? 

    There are two possible approaches - one, build an application prototype, test a random sample of each and choose the one that gives you the best efficiency.  Or, use an accurate mathematical model to calculate the losses of each and chose the best. The first approach lacks the variability of each parameter due to the six sigma statistical distribution where it is next to impossible to get a device laying on the outer limits of the distribution. That leaves the mathematical model approach. If you take this route, you can have built-in tolerances in the equations to accommodate all the variabilities and use a simplified equation for the control MOSFET losses (clearly you can use a very detailed model should you chose to) to explore these losses. Luckily you can explore the losses using the Explore function in Maple.

    The figure below shows a three dimensional plot, plus five other variables in the formula that the user can change using sliders that cover the range of values of interest including Minima and Maxima, while observing in real time the effects of the change on the power loss.

    This means that by changing the values of any set of variables, you can observe their effect on the function. To put it simply, this single feature helps you replace dozens of plots with just one, saving you precious time and cost in fine-tuning your design. In my opinion, this is equivalent to an eight-dimensional/axes plot.

    I used this amazing feature in the last few weeks and I was delighted at how simple it is to use and how much it simplifies the study of my approach and my components selection, in record times!

    This October 21st, Maplesoft will be hosting a full-production, live streaming webinar featuring Dr. Robert Lopez, Emeritus Professor and Maple Fellow. You might have caught Dr. Lopez's Clickable Calculus webinar series before, but this webinar is your chance to meet the man behind the voice and watch him use Clickable Math techniques live!

    In this webinar, Dr. Lopez will present examples of what "resequencing concepts and skills" looks like when implemented with Maple's point-and-click syntax-free paradigm. He will demonstrate how Maple can not only be used to elucidate the concept, but also, how it can be used to illustrate and implement the manipulations that ultimately the student must master.

    Click here for more information and registration.

    A wealth of knowledge is on display in MaplePrimes as our contributors share their expertise and step up to answer others’ queries. This post picks out one such response and further elucidates the answers to the posted question. I hope these explanations appeal to those of our readers who might not be familiar with the techniques embedded in the original responses.

    Before I begin, a quick note that the content below was primarily created by one of our summer interns, Pia, with guidance and advice from me.

    The Question: Rearranging the expression of equations

    SY G wanted to be able to re-write an equation in terms of different variables.  SY G presented this example: 

    I have the following two equations:

    x1 = a-y1-d*y2;
    x2 = a-y2-d*y1;

    I wish to express the first equation in terms of y1 and x2, so that

    x1 = c - b*y1+d*x2;

    where c=a-a*d and b=1-d^2. How can I get Maple to rearrange the original equation x1 in term of y1, x2, c and b?

    This question was answered by nm who provided code with a systematic approach:

    restart;
    eq1:=x1=a-y1-d*y2:
    eq2:=x2=a-y2-d*y1:
    z:=expand(subs(y2=solve(eq2,y2),eq1)):
    z:=algsubs((a-a*d)=c,z):
    algsubs((1-d^2)=b,z);

    On the other hand, Carl Love answered this enquiry using a more direct and simple code:

    simplify(x1=a-y1-d*y2, {a-y2-d*y1= x2, 1-d^2= b, a-a*d= c});

    Let’s talk more about the expand, algsubs, subs, and simplify commands

    First let’s take a look at the method nm used to solve the problem using the commands expand, subs, solve and algsubs.

    The expand command, expand(expr, expr1, expr2, ..., exprn), distributes products over sums. This is done for all polynomials. For quotients of polynomials, only sums in the numerator are expanded; products and powers are left alone.

    The solve command, solve(equations, variables), solves one or more equations or inequalities for their unknowns.

    The subs command, subs(x=a,expr), substitutes a for x in the expression expr.

    The function algsubs, algsubs(a = b, f),performs an algebraic substitution, replacing occurrences of a with b in the expression f.  It is a generalization of the subs command, which only handles syntactic substitution.

    Let’s tackle the Maple code written by nm step by step:

    1) restart;
    The restart command is used to clear Maple’s internal memory

    2)  eq1:=x1=a-y1-d*y2:
          eq2:=x2=a-y2-d*y1:
    The names eq1 and eq2 were assigned to the equations SY G provided.

    3) z:=expand(subs(y2=solve(eq2,y2),eq1)):
    A new variable, z, was created, which will end up being x1 written in the terms SY G wanted.

    • solve(eq2,y2)
      • the solve command was used to solve the expression eq2 for the variable y2.

    • subs(y2=solve(eq2,y2),eq1)
      • The subs command was used to replace in expression eq1, y2 as determined by the solve step. 

    • expand(subs(y2=solve(eq2,y2),eq1))
      • The expand command was used to distribute products over sums. Note: this step served to ensure that the final output looked exactly how SY G wanted.

    4) z:=algsubs((a-a*d)=c,z):
    First, nm equated a-a*d to c, so later the algsubs command could be applied to substitute the new variable c into the expression z.

    5) algsubs((1-d^2)=b,z);
    Again, nm equated 1-d^2 to b, so later the algsubs command could be applied to substitute the new variable b into the expression z.

    An alternate approach

    Now let us check out Carl Love’s approach. Carl Love uses the simplify command in conjunction with side relations.

    The simplify command has many calling sequences and one of them is the simplify(expr,eqns), that is known as simplify/siderels. A simplification of expr with respect to the side relations eqns is performed. The result is an expression which is mathematically equivalent toexpr but which is in normal form with respect to the specified side relations. Basically you are telling Maple to simplify the expression (expr) using the parameters (eqns) you gave to it.

     

    I hope that you find this useful. If there is a particular question on MaplePrimes that you would like further explained, please let me know. 

     Obtain the tri-stimulus XYZ values from the CIE Color matching functions.

     Show the gamut of maximum chroma for the standard observer model with a D65 Illuminant.

     Approximate the white point of a Planckian source and compare to D65.

     Translate the maximum chroma gamut in xy to Lab (CIE L*a*b*) for perceived gamut (Violet and Magenta come together)

     Map the RGB color cube of fully saturated color into Lab and compare to perceivable colors.

    10/6/15  Initial Document

    •12/28/15 Improve RGB gamut with more data points: Procedures added for RGB to Lab: Wavlength Colors now based on CIEDE2000 model for Lab.                   

     

     Here is the latest version of this document, the MSL_data must be in a directory set in the mw file;

    MSL_data.xlsx    Vision_RGB_Gamut.mw

    In this paper we will demonstrate the many differences of implementation in the modeling of mechanical systems using embedded components through Maplesoft. The mechanical systems are used for different tasks and therefore have different structure in its design; as to the nature of the used functional elements placed on them, they vary greatly. This diversity is reflected in approaches and practices in modeling.

    The following cases focus on mechanical components of the units manufacturing and processing machines. We can generate graphs for analysis using different dynamic pair ametros; all in real-time considerations in its manufacturing costs from the equations of conservation of energy.
    Therefore modeling with Maplesoft ensures the smooth optimum performance in mechanical systems, highlighting the sustainability criteria for other areas of engineering.

     

    XXXIII_Coloquio_SMP_2015.pdf

    XXXIII_Coloquio_UNASAM_2015.mw

    (in spanish)

    L.AraujoC.

     

     

    Apparently inconsistent behaviour of the BesselJ() function.

    Examples: BesselJ(-3, 0)  ... gives 0 (correct)

    but BesselJ(-3.0, 0), BesselJ(-3, 0.0)  and BesselJ(-3, 0.0) all give Float(infinity) (wrong! - should be 0.0)

    The problem seems to occur for all negative integer values of the first argument (the order) when the second argument is 0 or 0.0.


    One of the interesting things about the Physics package is that it was designed from scratch to extend the domain of operations of the Maple system from commutative variables to one that includes commutative, anticommutative and nonocommutative variables, as well as abstract vectors and related (nabla) differential operators. In this line we have, among others, the following Physics commands working with this extended domain: `*` , `.` , `^` , diff , Expand , Normal , Simplify , Gtaylor , and Coefficients .

     

    More recently, Pascal Szriftgiser (from Laboratoire PhLAM, Université Lille 1, France), suggested a similar approach to factorize expressions involving noncommutative variables. This is a pretty complicated problem though. Pascal's suggestion, however, spinned around an idea beautiful for its simplicity, similar to what is done in the experimental Physics command, PerformOnAnticommutativeSystem , that is, to transform the problem into one that can be treated with the command that works only with commutative variables and from there extract the result for noncommutative ones.The approach has limitations but it is surprising how far one can go using imaginative algebraic manipulations to extend these commands that otherwise only work with commutative variables.

     

    In brief, we now have a new command, Physics:-Factor, with already powerful performance for factorizing algebraic expressions that involve commutative, noncommutative and anticommutative variables, making Maple's mathematical capabilities more advanced in very interesting directions. This command is in fact useful not just in advanced theoretical physics, but for instance also when working with noncommutative symbols representing abstract matrices (that can have dependency, and so they can be differentiated before saying anything about their components, multiplied, and be present int  expressions that in turn can be expanded, simplified and now also factorized), and also useful with expressions that include differential operators, now that within Physics you can compute with the the covariant and noncovariant derivatives D_  and d_ algebraically. For instance, how about solving differential equations using Physics:-Factor (reducing their order by means of factoring the involved differential operators) ? :)

     

    What follows are some basic algebraic examples illustrating the novelty, and as usual to reproduce the results in this worksheet you need to update your Physics library with the one available in the Maplesoft R&D Physics webpage.

     

    Physics:-Version()[2]

    `2015, September 25, 7:48 hours`

    (1)

    with(Physics); -1; Setup(quantumoperators = {a, b, c, d, e}, mathematicalnotation = true)

    [mathematicalnotation = true, quantumoperators = {a, b, c, d, e}]

    (2)

    First example, because of using mathematical notation, noncommutative variables are displayed in different color (olive)

    Physics:-`*`(Physics:-`^`(alpha, 2), Physics:-`^`(a, 2))+Physics:-`*`(Physics:-`*`(Physics:-`*`(alpha, sqrt(2)), a), b)+Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(4, sqrt(2)), lambda), Physics:-`^`(b, 2)), c)+Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(4, lambda), alpha), b), c), a)+Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(4, lambda), sqrt(2)), b), c), b)+Physics:-`*`(Physics:-`*`(16, Physics:-`^`(lambda, 2)), Physics:-`^`(Physics:-`*`(b, c), 2))+Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(4, alpha), lambda), a), b), c)+Physics:-`*`(Physics:-`*`(Physics:-`*`(sqrt(2), alpha), b), a)+Physics:-`*`(2, Physics:-`^`(b, 2))

    alpha^2*Physics:-`^`(a, 2)+alpha*2^(1/2)*Physics:-`*`(a, b)+4*2^(1/2)*lambda*Physics:-`*`(Physics:-`^`(b, 2), c)+4*lambda*alpha*Physics:-`*`(b, c, a)+4*2^(1/2)*lambda*Physics:-`*`(b, c, b)+16*lambda^2*Physics:-`^`(Physics:-`*`(b, c), 2)+4*lambda*alpha*Physics:-`*`(a, b, c)+alpha*2^(1/2)*Physics:-`*`(b, a)+2*Physics:-`^`(b, 2)

    (3)

    Physics:-Factor(alpha^2*Physics:-`^`(a, 2)+alpha*2^(1/2)*Physics:-`*`(a, b)+4*2^(1/2)*lambda*Physics:-`*`(Physics:-`^`(b, 2), c)+4*lambda*alpha*Physics:-`*`(b, c, a)+4*2^(1/2)*lambda*Physics:-`*`(b, c, b)+16*lambda^2*Physics:-`^`(Physics:-`*`(b, c), 2)+4*lambda*alpha*Physics:-`*`(a, b, c)+alpha*2^(1/2)*Physics:-`*`(b, a)+2*Physics:-`^`(b, 2))

    Physics:-`^`(4*lambda*Physics:-`*`(b, c)+a*alpha+2^(1/2)*b, 2)

    (4)

    A more involved example from a physics problem, illustrating that the factorization is also happening within function's arguments, as well as that we can also correctly expand mathematical expressions involving noncommutative variables

    PDEtools:-declare((a, b, c, g)(x, y)):

    a(x, y)*`will now be displayed as`*a

     

    b(x, y)*`will now be displayed as`*b

     

    c(x, y)*`will now be displayed as`*c

     

    g(x, y)*`will now be displayed as`*g

    (5)

    Physics:-Intc(Physics:-`^`(Physics:-`*`(Physics:-`*`(Physics:-`*`(4, Physics:-Dagger(b(x, y))), c(x, y)), lambda)+Physics:-`*`(Physics:-`*`(Physics:-`*`(alpha, f(t)), a(x, y)), Physics:-Dagger(a(x, y)))+Physics:-`*`(Physics:-`*`(sqrt(2), g(x, y)), b(x, y)), 2), x, y)

    Int(Int(Physics:-`^`(4*lambda*Physics:-`*`(Physics:-Dagger(b(x, y)), c(x, y))+alpha*f(t)*Physics:-`*`(a(x, y), Physics:-Dagger(a(x, y)))+2^(1/2)*g(x, y)*b(x, y), 2), x = -infinity .. infinity), y = -infinity .. infinity)

    (6)

    So first expand ...

    expand(Int(Int(Physics:-`^`(4*lambda*Physics:-`*`(Physics:-Dagger(b(x, y)), c(x, y))+alpha*f(t)*Physics:-`*`(a(x, y), Physics:-Dagger(a(x, y)))+2^(1/2)*g(x, y)*b(x, y), 2), x = -infinity .. infinity), y = -infinity .. infinity))

    Int(Int(16*lambda^2*Physics:-`*`(Physics:-Dagger(b(x, y)), c(x, y), Physics:-Dagger(b(x, y)), c(x, y))+4*lambda*alpha*f(t)*Physics:-`*`(Physics:-Dagger(b(x, y)), c(x, y), a(x, y), Physics:-Dagger(a(x, y)))+4*lambda*2^(1/2)*g(x, y)*Physics:-`*`(Physics:-Dagger(b(x, y)), c(x, y), b(x, y))+4*alpha*f(t)*lambda*Physics:-`*`(a(x, y), Physics:-Dagger(a(x, y)), Physics:-Dagger(b(x, y)), c(x, y))+alpha^2*f(t)^2*Physics:-`*`(a(x, y), Physics:-Dagger(a(x, y)), a(x, y), Physics:-Dagger(a(x, y)))+alpha*f(t)*2^(1/2)*g(x, y)*Physics:-`*`(a(x, y), Physics:-Dagger(a(x, y)), b(x, y))+4*2^(1/2)*g(x, y)*lambda*Physics:-`*`(b(x, y), Physics:-Dagger(b(x, y)), c(x, y))+2^(1/2)*g(x, y)*alpha*f(t)*Physics:-`*`(b(x, y), a(x, y), Physics:-Dagger(a(x, y)))+2*g(x, y)^2*Physics:-`^`(b(x, y), 2), x = -infinity .. infinity), y = -infinity .. infinity)

    (7)

    Now retrieve the original expression by recursing over the arguments and so factoring the integrand

    Physics:-Factor(Int(Int(16*lambda^2*Physics:-`*`(Physics:-Dagger(b(x, y)), c(x, y), Physics:-Dagger(b(x, y)), c(x, y))+4*lambda*alpha*f(t)*Physics:-`*`(Physics:-Dagger(b(x, y)), c(x, y), a(x, y), Physics:-Dagger(a(x, y)))+4*lambda*2^(1/2)*g(x, y)*Physics:-`*`(Physics:-Dagger(b(x, y)), c(x, y), b(x, y))+4*alpha*f(t)*lambda*Physics:-`*`(a(x, y), Physics:-Dagger(a(x, y)), Physics:-Dagger(b(x, y)), c(x, y))+alpha^2*f(t)^2*Physics:-`*`(a(x, y), Physics:-Dagger(a(x, y)), a(x, y), Physics:-Dagger(a(x, y)))+alpha*f(t)*2^(1/2)*g(x, y)*Physics:-`*`(a(x, y), Physics:-Dagger(a(x, y)), b(x, y))+4*2^(1/2)*g(x, y)*lambda*Physics:-`*`(b(x, y), Physics:-Dagger(b(x, y)), c(x, y))+2^(1/2)*g(x, y)*alpha*f(t)*Physics:-`*`(b(x, y), a(x, y), Physics:-Dagger(a(x, y)))+2*g(x, y)^2*Physics:-`^`(b(x, y), 2), x = -infinity .. infinity), y = -infinity .. infinity))

    Int(Int(Physics:-`^`(4*lambda*Physics:-`*`(Physics:-Dagger(b(x, y)), c(x, y))+alpha*f(t)*Physics:-`*`(a(x, y), Physics:-Dagger(a(x, y)))+2^(1/2)*g(x, y)*b(x, y), 2), x = -infinity .. infinity), y = -infinity .. infinity)

    (8)

    This following one looks simpler but it is actually more complicated:

    Physics:-`*`(Physics:-Commutator(a, b), c)

    Physics:-`*`(Physics:-Commutator(a, b), c)

    (9)

    expand(Physics:-`*`(Physics:-Commutator(a, b), c))

    Physics:-`*`(a, b, c)-Physics:-`*`(b, a, c)

    (10)

    The complication consists of the fact that the standard factor  command, that assumes products are commutative, can never deal with factors like Physics:-Commutator(a, b) = a*b-a*b because if products were commutative these factors are equal to 0. Of course we not just us factor but include a number of algebraic manipulations before using it, so that the approach handles these cases nicely anyway

    Physics:-Factor(Physics:-`*`(a, b, c)-Physics:-`*`(b, a, c))

    Physics:-`*`(Physics:-`*`(a, b)-Physics:-`*`(b, a), c)

    (11)

    This other one is more complicated:

    Physics:-`*`(Physics:-`*`(a, b)-Physics:-`*`(b, a), a+Physics:-`*`(beta, b)+Physics:-`^`(c, 2))

    Physics:-`*`(Physics:-`*`(a, b)-Physics:-`*`(b, a), a+beta*b+Physics:-`^`(c, 2))

    (12)

    When you expand,

    expand(Physics:-`*`(Physics:-`*`(a, b)-Physics:-`*`(b, a), a+beta*b+Physics:-`^`(c, 2)))

    Physics:-`*`(a, b, a)+beta*Physics:-`*`(a, Physics:-`^`(b, 2))+Physics:-`*`(a, b, Physics:-`^`(c, 2))-Physics:-`*`(b, Physics:-`^`(a, 2))-beta*Physics:-`*`(b, a, b)-Physics:-`*`(b, a, Physics:-`^`(c, 2))

    (13)

    you see that there are various terms involving the same noncommutative operands, just multiplied in different order. Generally speaking the limitation (n this moment) of the approach is: "there cannot be more than 2 terms in the expanded form containing the same operands" . For instance in (13) the 1st and 4th terms have the same operands, that are actually also present in the 5th term but there you also have beta and for that reason (involving some additional manipulations) it can be handled:

    Physics:-Factor(Physics:-`*`(a, b, a)+beta*Physics:-`*`(a, Physics:-`^`(b, 2))+Physics:-`*`(a, b, Physics:-`^`(c, 2))-Physics:-`*`(b, Physics:-`^`(a, 2))-beta*Physics:-`*`(b, a, b)-Physics:-`*`(b, a, Physics:-`^`(c, 2)))

    Physics:-`*`(Physics:-`*`(a, b)-Physics:-`*`(b, a), a+beta*b+Physics:-`^`(c, 2))

    (14)

    Recalling, in all these examples, the task is actually accomplished by the standard factor  command, and the manipulations consist of ingeniously rewriting the given problem as one that involves only commutative variables, and from extract the correct result for non commutative variables.

     

    To conclude, here is an example where the approach implemented does not work (yet) because of the limitation mentioned in the previous paragraph:

    Physics:-`^`(Physics:-Commutator(a, b)+c, 2)

    Physics:-`^`(Physics:-Commutator(a, b)+c, 2)

    (15)

    expand(Physics:-`^`(Physics:-Commutator(a, b)+c, 2))

    Physics:-`*`(a, b, a, b)-Physics:-`*`(a, Physics:-`^`(b, 2), a)+Physics:-`*`(a, b, c)-Physics:-`*`(b, Physics:-`^`(a, 2), b)+Physics:-`*`(b, a, b, a)-Physics:-`*`(b, a, c)+Physics:-`*`(c, a, b)-Physics:-`*`(c, b, a)+Physics:-`^`(c, 2)

    (16)

    In this expression, the 1st, 2nd, 4th and 5th terms have the same operands a, b, a, b and then there are four terms containing the operands a, b, c. We do have an idea of how this could be done too ... :) To be there in one of the next Physics updates.

    NULL

    NULL


    Download Physics[Factor].mw

    Edgardo S. Cheb-Terrab
    Physics, Differential Equations and Mathematical Functions, Maplesoft

    We have a new video about plotting with procedures, specifically on how to avoid an error related to evaluation that many people make. 

    The worksheet I used in the video is available here:  PlottingWithProcedures.mw

    By the way, this mistake doesn't occur just in the context of plotting. Users of Optimization commands (and other commands that allow functions to be expressed as either an expression in a variable or as a procedure) frequently run into this problem too.

     

    We are happy to announce that Maple T.A. now supports the Learning Tools Interoperability® (LTI) standard, which means that Maple T.A. can be easily integrated with course management systems that support LTI. Maplesoft officially supports LTI connectivity with Canvas, Blackboard Learn™, Brightspace™, Moodle™, and Sakai.

    Using the LTI standard, you can integrate Maple T.A. directly into your existing course management or learning management platforms. This allows for single-sign on in one central location and Maple T.A. assignment delivery and grade pushing right inside of your existing solutions.

    If you would like to use the LTI connectivity feature, please contact Maplesoft Technical Support at support@maplesoft.com. They will provide the instructions and files you need to set up your connection, and answer any questions you may have about how the integration works on your platform.

    Jonny
    Maplesoft Product Manager, Maple T.A.

    A wealth of knowledge is on display in MaplePrimes as our contributors share their expertise and step up to answer others’ queries. This post picks out one such response and further elucidates the answers to the posted question. I hope these explanations appeal to those of our readers who might not be familiar with the techniques embedded in the original responses.

    Before I begin, a quick note that the content below was primarily created by one of our summer interns, Pia, with guidance and advice from me.

    The Question: Source Code of Math Apps

    Eberch, a new Maple user, was interested in learning how to build his own Math Apps by looking at the source code of some of the already existing Math Apps that Maple offers.

    Acer helpfully suggested that he look into the Startup Code of a Math App, in order to see definitions of procedures, modules, etc. He also recommended Eberch take a look at the “action code” that most of the Math Apps have which consist of function calls to procedures or modules defined in the Startup Code. The Startup Code can be accessed from the Edit menu. The function calls can be seen by right-clicking on the relevant component and selecting Edit Click Action.

    Acer’s answer is correct and helpful. But for those just learning Maple, I wanted to provide some additional explanation.

    Let’s talk more about building your own Math Apps

    Building your own Math Apps can seem like something that involves complicated code and rare commands, but Daniel Skoog perfectly portrays an easy and straightforward method to do this in his latest webinar. He provides a clear definition of a Math App, a step-by-step approach to creating a Math App using the explore and quiz commands, and ways to share your applications with the Maple community. It is highly recommended that you watch the entire webinar if you would like to learn more about the core concepts of working with Maple, but you can find the Math App information starting at the 33:00 mark.

    I hope that you find this useful. If there is a particular question on MaplePrimes that you would like further explained, please let me know. 

    The GroupTheory package in Maple includes facilities for working with finitely presented groups - groups defined by finitely many generators and defining relations.  We now have a video tutorial that covers the basics of this aspect of the package.  As always, we appreciate feedback and suggestions regarding this feature, or new features that you would like to see in the GroupTheory package.

    Maple's dsolve numeric can solve delay ODEs and DAEs as of Maple 18. However, if I am not wrong, it cannot solve delay equations with a time dependent history. In this post I show two examples.

    Example 1:

    y1(t) and y2(t) with time dependent history. Use of piecewise helps this problem to be solved efficiently. Hopefully Maple will add history soon in its capability.

    Example 2: 

    This is a very a complicated stiff problem from immunology. As of now, I believe only Maple can solve this (other than RADAR5 from Prof. Hairer). Details and plots are posted in the attached code.

     

    Let me know if any one has a delay problem that needs to be solved. I have tested many delay problems in Maple (they work fine). The attached examples required addtional tweaking, hence the post.

     

    I want to take this opportunity to congratulate and thank Maple's dsolve numeric/delay solvers for their fantastic job. Maple is world leader not because of example1, but because of its ability to solve example 2.

     

     

    restart;

     This code is written by Dayaram Sonawane and Venkat R. Subramnian, University of Washington. You will need Maple 18 or later for this. For those who are wanting to solve these problems in earlier versions, I can help them by offering a procedure based approach (less efficient).

    Example1 The first example solved is a state dependent delay problem (http://www.mathworks.com/help/matlab/math/state-dependent-delay-problem.html).

     

    eq1:= diff(y1(t),t)=y2(t);

    eq1 := diff(y1(t), t) = y2(t)

    (1)

    eq2:=diff(y2(t),t)=-y2(exp(1-y2(t)))*y2(t)^2*exp(1-y2(t));

    eq2 := diff(y2(t), t) = -y2(exp(1-y2(t)))*y2(t)^2*exp(1-y2(t))

    (2)

     Both y1(t) and y2(t) have time dependent history (y1(t)=log(t) and y2(t)=1/t, t<-0.1). If I am not mistaken one cannot solve this directly using Maple's dsolve numeric command. However, a simple trick can be used to redefine the equations for y1(t) and y2(t) as below

    eq3:=diff(y1(t),t)=piecewise(t<=0.1,1/t,y2(t));

    eq3 := diff(y1(t), t) = piecewise(t <= .1, 1/t, y2(t))

    (3)

    eq4:=diff(y2(t),t)=piecewise(t<=0.1,-1/t^2,-y2(exp(1-y2(t)))*y2(t)^2*exp(1-y2(t)));

    eq4 := diff(y2(t), t) = piecewise(t <= .1, -1/t^2, -y2(exp(1-y2(t)))*y2(t)^2*exp(1-y2(t)))

    (4)

     The problem is solved from a small number close to t = 0 (1e-4) to make Maple's dsolve numeric remember the history till t = 0.1

    epsilon:=1e-4;

    epsilon := 0.1e-3

    (5)

    sol:=dsolve({eq3,eq4,y1(epsilon)=log(epsilon),y2(epsilon)=1/epsilon},type=numeric,delaymax=5):

    with(plots):

    odeplot(sol,[t,y1(t)],0.1..5,thickness=3,axes=boxed);

     

    odeplot(sol,[t,y2(t)],0.1..5,thickness=3,axes=boxed);

     

    sol(5.0);log(5.0);1/5.0;

    [t = 5.0, y1(t) = 1.60942323180838, y2(t) = .199998786891688]

    1.609437912

    .2000000000

    (6)

    Tweaking the tolerances and epsilon will get the solution even more closer to the expected answers.

     

     

     Example 2

     The next problem discussed is very stiff, complicated and as of today, according Professor Hairer (one of the world's leading authority in numerical solutions of ODEs, DAEs), cannot be solved by any other code other than his RADAR (5th order implicit Runge Kutta modified for delay equations, Guglielmi N. and Hairer E. (2001) Implementing Radau IIa methods for stiff delay differential equations. Computing 67:1-12). This problem requires very stringent tolerances. For more information read, http://www.scholarpedia.org/article/Stiff_delay_equations. I can safely say that Maple can boast that it can solve this delay differential equation by using a switch function (instead of Heaviside/picecewise function). Code is attached below and results are compared with the output from RADAR code.  Note that dsolve/numeric is probably taking more time steps compared to RADAR, but the fact that Maple's dsolve numeric solved this model (which cannot be solved in Mathematica or MATLAB[needs confirmation for MATLAB]) should make Maple's code writers proud. It is very likely that we will be trying to submit an educational/research article on this topic/example soon to a journal. For some weird reasons, stiff=true gives slightly inaccurate results.

    restart:

     

    radar5data:=readdata("C:\\Users\\Venkat16core-office\\Google Drive\\waltmanproblem\\sol.txt",[string,string,float,string,string,float,float,float,float,float,float]):

    nops(radar5data);

    1059

    (7)

    radar5data[1059];

    ["X", "=", 300.000000, "Y", "=", 0.6154486288e-15, 0.3377120916e-6, 0.4221403310e-6, 0.2142554563e-5, 299.9999999, 299.6430338]

    (8)

    eq[1]:=diff(y[1](t),t)=-r*y[1](t)*y[2](t)-s*y[1](t)*y[4](t);

    eq[1] := diff(y[1](t), t) = -r*y[1](t)*y[2](t)-s*y[1](t)*y[4](t)

    (9)

    eq[2]:=diff(y[2](t),t)=-r*y[1](t)*y[2](t)+alpha*r*y[1](y[5](t))*y[2](y[5](t))*H1;#Heaviside(t-35);

    eq[2] := diff(y[2](t), t) = -r*y[1](t)*y[2](t)+alpha*r*y[1](y[5](t))*y[2](y[5](t))*H1

    (10)

    eq[3]:=diff(y[3](t),t)=r*y[1](t)*y[2](t);

    eq[3] := diff(y[3](t), t) = r*y[1](t)*y[2](t)

    (11)

    eq[4]:=diff(y[4](t),t)=-s*y[1](t)*y[4](t)-gamma1*y[4](t)+beta*r*y[1](y[6](t))*y[2](y[6](t))*H2;#Heaviside(t-197);

    eq[4] := diff(y[4](t), t) = -s*y[1](t)*y[4](t)-gamma1*y[4](t)+beta*r*y[1](y[6](t))*y[2](y[6](t))*H2

    (12)

    eq[5]:=diff(y[5](t),t)=H1*(y[1](t)*y[2](t)+y[3](t))/(y[1](y[5](t))*y[2](y[5](t))+y[3](y[5](t)));#eq[7]:=y[7](t)=HH(t);

    eq[5] := diff(y[5](t), t) = H1*(y[1](t)*y[2](t)+y[3](t))/(y[1](y[5](t))*y[2](y[5](t))+y[3](y[5](t)))

    (13)

    eq[6]:=diff(y[6](t),t)=H2*(10.^(-12)*0+y[2](t)+y[3](t))/(10.^(-12)*0+y[2](y[6](t))+y[3](y[6](t)));

    eq[6] := diff(y[6](t), t) = H2*(y[2](t)+y[3](t))/(y[2](y[6](t))+y[3](y[6](t)))

    (14)

    H1:=1/2+1/2*tanh(100*(t-35));H2:=1/2+1/2*tanh(100*(t-197));

    H1 := 1/2+(1/2)*tanh(100*t-3500)

    H2 := 1/2+(1/2)*tanh(100*t-19700)

    (15)

    alpha:=1.8;beta:=20.;gamma1:=0.002;r:=5.*10^4;s:=10.^5;

    alpha := 1.8

    beta := 20.

    gamma1 := 0.2e-2

    r := 50000.

    s := 100000.

    (16)

    seq(eq[i],i=1..6);

    diff(y[1](t), t) = -50000.*y[1](t)*y[2](t)-100000.*y[1](t)*y[4](t), diff(y[2](t), t) = -50000.*y[1](t)*y[2](t)+90000.0*y[1](y[5](t))*y[2](y[5](t))*(1/2+(1/2)*tanh(100*t-3500)), diff(y[3](t), t) = 50000.*y[1](t)*y[2](t), diff(y[4](t), t) = -100000.*y[1](t)*y[4](t)-0.2e-2*y[4](t)+1000000.*y[1](y[6](t))*y[2](y[6](t))*(1/2+(1/2)*tanh(100*t-19700)), diff(y[5](t), t) = (1/2+(1/2)*tanh(100*t-3500))*(y[1](t)*y[2](t)+y[3](t))/(y[1](y[5](t))*y[2](y[5](t))+y[3](y[5](t))), diff(y[6](t), t) = (1/2+(1/2)*tanh(100*t-19700))*(y[2](t)+y[3](t))/(y[2](y[6](t))+y[3](y[6](t)))

    (17)

    ics:=y[1](0)=5.*10^(-6),y[2](0)=10.^(-15),y[3](0)=0,y[4](0)=0,y[5](0)=1e-40,y[6](0)=1e-20;

    ics := y[1](0) = 0.5000000000e-5, y[2](0) = 0.1000000000e-14, y[3](0) = 0, y[4](0) = 0, y[5](0) = 0.1e-39, y[6](0) = 0.1e-19

    (18)

    #infolevel[all]:=10;

    sol:=dsolve({seq(eq[i],i=1..6),ics},type=numeric,delaymax=300,initstep=1e-6,abserr=[1e-21,1e-21,1e-21,1e-21,1e-9,1e-9],[y[1](t),y[2](t),y[3](t),y[4](t),y[5](t),y[6](t)],relerr=1e-9,maxstep=10,optimize=false,compile=true,maxfun=0):

     

     

     note that compile = true was used for efficiency

    t11:=time():sol(300);time()-t11;

    [t = 300., y[1](t) = 0.615611371327094e-15, y[2](t) = 0.337706811581908e-6, y[3](t) = 0.422136411682798e-6, y[4](t) = 0.214253771204037e-5, y[5](t) = 299.999986716780, y[6](t) = 299.643054284209]

    .141

    (19)

    with(plots):

    nd:=nops(radar5data);

    nd := 1059

    (20)

    radar5data[nd];

    ["X", "=", 300.000000, "Y", "=", 0.6154486288e-15, 0.3377120916e-6, 0.4221403310e-6, 0.2142554563e-5, 299.9999999, 299.6430338]

    (21)

     Values at t = 300 match with expected results.

    pr[1]:=plot([seq([radar5data[i][3],log(radar5data[i][6])/log(10)],i=1..nd)],style=point,color=green):

    p[1]:=odeplot(sol,[t,log(y[1](t))/log(10)],0..300,axes=boxed,thickness=3):

    display({pr[1],p[1]});

     

    pr[2]:=plot([seq([radar5data[i][3],log(radar5data[i][7])/log(10)],i=1..nd)],style=point,color=green):

    p[2]:=odeplot(sol,[t,log(y[2](t))/log(10)],0..300,axes=boxed,thickness=3,numpoints=1000):

    display({pr[2],p[2]});

     

    pr[3]:=plot([seq([radar5data[i][3],log(radar5data[i][8])/log(10)],i=2..nd)],style=point,color=green):

     

    p[3]:=odeplot(sol,[t,log(y[3](t))/log(10)],0..300,axes=boxed,thickness=3):

    display({pr[3],p[3]});

     

    pr[4]:=plot([seq([radar5data[i][3],log(radar5data[i][9])/log(10)],i=496..nd)],style=point,color=green,view=[197..300,-9..-5]):

    p[4]:=odeplot(sol,[t,log(y[4](t))/log(10)],197..300,axes=boxed,thickness=3,view=[197..300,-9..-5]):

    display({pr[4],p[4]});

     

    pr[5]:=plot([seq([radar5data[i][3],radar5data[i][10]],i=1..nd)],style=point,color=green):

    p[5]:=odeplot(sol,[t,y[5](t)],0..300,axes=boxed,thickness=3):

    display({pr[5],p[5]});

     

    pr[6]:=plot([seq([radar5data[i][3],radar5data[i][11]],i=1..nd)],style=point,color=green):

    p[6]:=odeplot(sol,[t,y[6](t)],0..300,axes=boxed,thickness=3):

    display({pr[6],p[6]});

     


    Download delayimmunetopost.mws

    As a very good application for viewing and calculation of the components of acceleration either tangential or normal. Besides immediately it is shown an Application for physics.

    Componentes_de_la_Acelelación.mw

    (in spanish)

    L. Araujo C.

     

     

    Here we see the projection of a vector onto another using different concepts ranging from linear algebra to vector calculus. Implemented components thus seen in three-dimensional space.

     

    Proyecciones_Vectoriales.mw

    (in spanish)

    L.Araujo C.

    First 75 76 77 78 79 80 81 Last Page 77 of 308