Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

## looking for the coefficients of "A and B"

restart;

t1:=[(-(0.3536776512e-1*(2.999999999*exp(-.1111111111*omega*(2.*cos(theta)+9.))+2.999999999*exp(-.1111111111*omega*(2.*cos(theta)-9.))-2.999999999*exp(-(1/9)*omega*(2*cos(theta)-27))-2.999999999*exp(-.1111111111*omega*(2.*cos(theta)+27.))-2.999999999*exp((1/9)*omega*(2*cos(theta)+27))+2.999999999*exp(.1111111111*omega*(2.*cos(theta)+9.))-2.999999999*exp(.1111111111*omega*(2.*cos(theta)-27.))+2.999999999*exp(.1111111111*omega*(2.*cos(theta)-9.))+2.999999999*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega-2.999999999*exp((1/9)*omega*(2*cos(theta)+27))*omega-9.*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega+9.*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega+12.*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2+12.*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2-2.999999999*exp(-(1/9)*omega*(2*cos(theta)-27))*omega+9.*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega-9.*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega+12.*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2+12.*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2+2.999999999*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega+.6666666665*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)+.6666666665*exp((1/9)*omega*(2*cos(theta)+27))*omega*cos(theta)+2.666666667*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)-2.666666667*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)-.6666666665*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)-.6666666665*exp(-(1/9)*omega*(2*cos(theta)-27))*omega*cos(theta)+.6666666665*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)+.6666666665*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)-.6666666665*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)-2.666666667*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)+2.666666667*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)-.6666666665*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)))*cos((2/9)*omega*sin(theta))/(-16.*omega^2+exp(4*omega)-2.+exp(-4.*omega)))*A-(0.3536776512e-1*(1.570796327*exp(.2222222222*omega*(cos(theta)-9.))-1.570796327*exp(.2222222222*omega*(cos(theta)-18.))-1.570796327*exp(-.2222222222*omega*(cos(theta)-9.))+1.570796327*exp(-(2/9)*omega*cos(theta))+1.570796327*exp((2/9)*omega*cos(theta))-1.570796327*exp(.2222222222*omega*(cos(theta)+9.))+1.570796327*exp(-.2222222222*omega*(cos(theta)+9.))-1.570796327*exp(-.2222222222*omega*(cos(theta)+18.))+4.712388980*exp(-(2/9)*omega*cos(theta))*omega-6.283185307*exp(-(2/9)*omega*cos(theta))*omega^3+4.712388980*exp(-(2/9)*omega*cos(theta))*omega^2+4.712388980*exp((2/9)*omega*cos(theta))*omega-6.283185307*exp((2/9)*omega*cos(theta))*omega^3+4.712388980*exp((2/9)*omega*cos(theta))*omega^2+1.570796327*exp(.2222222222*omega*(cos(theta)-18.))*omega^2+4.712388980*exp(.2222222222*omega*(cos(theta)-9.))*omega^2+1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*sinh(omega)-1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*sinh(omega)+1.570796327*exp(.2222222222*omega*(cos(theta)-18.))*omega+1.570796327*exp(.2222222222*omega*(cos(theta)+9.))*omega^2+6.283185307*exp(.2222222222*omega*(cos(theta)-9.))*omega^3-1.570796327*exp(.2222222222*omega*(cos(theta)+9.))*omega-4.712388980*exp(.2222222222*omega*(cos(theta)-9.))*omega-1.570796327*exp(-.2222222222*omega*(cos(theta)-9.))*omega-4.712388980*exp(-.2222222222*omega*(cos(theta)+9.))*omega+4.712388980*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2-1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*sinh(omega)+1.570796327*exp(-.2222222222*omega*(cos(theta)+18.))*omega+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)+1.570796327*exp(-.2222222222*omega*(cos(theta)-9.))*omega^2+6.283185307*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*sinh(omega)+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)+1.570796327*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2+.3490658504*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)-1.396263401*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*csgn(omega)*sinh(omega)+1.396263401*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*csgn(omega)*sinh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)+1.396263401*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*csgn(omega)*cosh(omega)-1.396263401*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp((1/9)*omega*(2*cos(theta)+27))*omega^2*cos(theta)*csgn(omega)*sinh(omega)-.3490658504*exp((1/9)*omega*(2*cos(theta)+27))*omega*cos(theta)*csgn(omega)*cosh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*csgn(omega)*cosh(omega)-1.396263401*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*csgn(omega)*cosh(omega)+1.396263401*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*csgn(omega)*cosh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)+1.396263401*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*csgn(omega)*sinh(omega)-1.396263401*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*csgn(omega)*sinh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*csgn(omega)*sinh(omega)-.3490658504*exp(-(1/9)*omega*(2*cos(theta)-27))*omega^2*cos(theta)*csgn(omega)*sinh(omega)+.3490658504*exp(-(1/9)*omega*(2*cos(theta)-27))*omega*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)*csgn(omega)*cosh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*csgn(omega)*cosh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*csgn(omega)*cosh(omega)+.3490658504*exp((1/9)*omega*(2*cos(theta)+27))*omega*cos(theta)*sinh(omega)-.3490658504*exp((1/9)*omega*(2*cos(theta)+27))*omega^2*cos(theta)*cosh(omega)+1.396263401*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*cosh(omega)-1.396263401*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*cosh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*cos(theta)*cosh(omega)-1.396263401*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*sinh(omega)+1.396263401*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*sinh(omega)+.3490658504*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*cosh(omega)+.3490658504*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*cosh(omega)+1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*csgn(omega)*cosh(omega)*omega-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*csgn(omega)*sinh(omega)*omega+4.712388980*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega^2-4.712388980*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega^2+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega-4.712388980*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)*omega+4.712388980*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)*omega-1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*csgn(omega)*sinh(omega)*omega-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)*sinh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*sinh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*sinh(omega)-.3490658504*exp(-(1/9)*omega*(2*cos(theta)-27))*omega*cos(theta)*sinh(omega)+6.283185307*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega^3-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*csgn(omega)*cosh(omega)*omega+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*csgn(omega)*sinh(omega)*omega^2+6.283185307*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega^3+6.283185307*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega^3-6.283185307*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)*omega^2-6.283185307*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)*omega^2-1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*csgn(omega)*sinh(omega)*omega^2-.3490658504*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*sinh(omega)-.3490658504*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*sinh(omega)-1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*csgn(omega)*sinh(omega)*omega+.3490658504*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)*sinh(omega)-6.283185307*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)*omega^2-6.283185307*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)*omega^2-1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*csgn(omega)*sinh(omega)*omega^2+1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*csgn(omega)*cosh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*csgn(omega)*sinh(omega)*omega+4.712388980*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega^2-4.712388980*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega^2+1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*sinh(omega)*omega+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega-4.712388980*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)*omega+4.712388980*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)*omega+.3490658504*exp(-(1/9)*omega*(2*cos(theta)-27))*omega^2*cos(theta)*cosh(omega)+.3490658504*exp(-(2/9)*omega*cos(theta))*omega*cos(theta)+1.745329252*exp(-(2/9)*omega*cos(theta))*omega^2*cos(theta)-1.396263401*exp(-(2/9)*omega*cos(theta))*omega^3*cos(theta)-.3490658504*exp((2/9)*omega*cos(theta))*omega*cos(theta)-1.745329252*exp((2/9)*omega*cos(theta))*omega^2*cos(theta)+1.396263401*exp((2/9)*omega*cos(theta))*omega^3*cos(theta)-6.283185307*exp(.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega^3-.3490658504*exp(.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)+1.745329252*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)-.3490658504*exp(-.2222222222*omega*(cos(theta)+18.))*omega*cos(theta)+1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*csgn(omega)*cosh(omega)-6.283185307*exp(.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega^3+6.283185307*exp(.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)*omega^2-1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*sinh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*cosh(omega)*omega^2+1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*cosh(omega)*omega^2+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*sinh(omega)*omega+6.283185307*exp(.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)*omega^2-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega+.3490658504*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*cos(theta)+1.396263401*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)+.3490658504*exp(.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)-.3490658504*exp(.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)+1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*cosh(omega)*omega-4.712388980*exp(-.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega^2+4.712388980*exp(-.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega^2+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*csgn(omega)*cosh(omega)+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*cosh(omega)*omega-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)+4.712388980*exp(-.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)*omega-4.712388980*exp(-.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)*omega+1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*cosh(omega)*omega-4.712388980*exp(.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega^2+4.712388980*exp(.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega^2+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*csgn(omega)*cosh(omega)+1.570796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*cosh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*csgn(omega)*cosh(omega)-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*cosh(omega)+4.712388980*exp(.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)*omega-4.712388980*exp(.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega-1.570796327*exp(.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*sinh(omega)*omega-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*cosh(omega)*omega^2+1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*cosh(omega)*omega^2-6.283185307*exp(-.1111111111*omega*(2.*cos(theta)-9.))*cosh(omega)*omega^3-6.283185307*exp(-.1111111111*omega*(2.*cos(theta)+9.))*cosh(omega)*omega^3+.3490658504*exp(-.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)-1.745329252*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)-.3490658504*exp(-.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)+.3490658504*exp(-.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)+6.283185307*exp(-.1111111111*omega*(2.*cos(theta)-9.))*sinh(omega)*omega^2+6.283185307*exp(-.1111111111*omega*(2.*cos(theta)+9.))*sinh(omega)*omega^2-1.570796327*exp(-(1/9)*omega*(2*cos(theta)-27))*sinh(omega)*omega+.3490658504*exp(.2222222222*omega*(cos(theta)-18.))*omega*cos(theta)+1.570796327*exp((1/9)*omega*(2*cos(theta)+27))*csgn(omega)*cosh(omega)-.3490658504*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*cos(theta)-1.396263401*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)-1.396263401*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*cosh(omega)+1.396263401*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*cosh(omega)+.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*cos(theta)*cosh(omega)+1.396263401*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*sinh(omega)-1.396263401*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*sinh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*cosh(omega)-.3490658504*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*cosh(omega)-1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*csgn(omega)*cosh(omega)*omega+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*csgn(omega)*sinh(omega)*omega^2+6.283185307*exp(-.1111111111*omega*(2.*cos(theta)-9.))*csgn(omega)*sinh(omega)*omega^3))*cos((2/9)*omega*sin(theta))*B/(-16.*omega^2+exp(4*omega)-2.+exp(-4.*omega))-(0.3536776512e-1*(-.5235987758*exp(.2222222222*omega*(cos(theta)-9.))-.5235987758*exp(.2222222222*omega*(cos(theta)-18.))-.5235987758*exp(-.2222222222*omega*(cos(theta)-9.))-.5235987758*exp(-(2/9)*omega*cos(theta))+.5235987758*exp((2/9)*omega*cos(theta))+.5235987758*exp(.2222222222*omega*(cos(theta)+9.))+.5235987758*exp(-.2222222222*omega*(cos(theta)+9.))+.5235987758*exp(-.2222222222*omega*(cos(theta)+18.))-2.094395103*exp(-(2/9)*omega*cos(theta))*omega-2.617993879*exp(-(2/9)*omega*cos(theta))*omega^3-3.665191430*exp(-(2/9)*omega*cos(theta))*omega^2+2.094395103*exp((2/9)*omega*cos(theta))*omega+2.617993879*exp((2/9)*omega*cos(theta))*omega^3+3.665191430*exp((2/9)*omega*cos(theta))*omega^2+.5235987758*exp(.2222222222*omega*(cos(theta)-18.))*omega^2-.5235987758*exp(.2222222222*omega*(cos(theta)-9.))*omega^2+.5235987758*exp(.2222222222*omega*(cos(theta)+9.))*omega^2-2.617993879*exp(.2222222222*omega*(cos(theta)-9.))*omega^3+1.047197552*exp(.2222222222*omega*(cos(theta)+9.))*omega+1.047197552*exp(.2222222222*omega*(cos(theta)-9.))*omega-1.047197552*exp(-.2222222222*omega*(cos(theta)-9.))*omega-1.047197552*exp(-.2222222222*omega*(cos(theta)+9.))*omega+.5235987758*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2-.5235987758*exp(-.2222222222*omega*(cos(theta)-9.))*omega^2+2.617993879*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3-.5235987758*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2-.5235987758*exp(.2222222222*omega*(cos(theta)-18.))*omega^3+.5235987758*exp(.2222222222*omega*(cos(theta)+9.))*omega^3+2.094395103*exp(.2222222222*omega*(cos(theta)-9.))*omega^4+.5235987758*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3-2.094395103*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4-.5235987758*exp(-.2222222222*omega*(cos(theta)-9.))*omega^3-2.094395103*exp(-(2/9)*omega*cos(theta))*omega^4+2.094395103*exp((2/9)*omega*cos(theta))*omega^4-.1163552835*exp(-(2/9)*omega*cos(theta))*omega*cos(theta)-.5817764175*exp(-(2/9)*omega*cos(theta))*omega^2*cos(theta)-.3490658505*exp(-(2/9)*omega*cos(theta))*omega^3*cos(theta)-.1163552835*exp((2/9)*omega*cos(theta))*omega*cos(theta)-.5817764175*exp((2/9)*omega*cos(theta))*omega^2*cos(theta)-.3490658505*exp((2/9)*omega*cos(theta))*omega^3*cos(theta)-.1163552835*exp(.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)-.3490658505*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)+.1163552835*exp(-.2222222222*omega*(cos(theta)+18.))*omega*cos(theta)+.1163552835*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*cos(theta)-.3490658505*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)-.1163552835*exp(.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)+.1163552835*exp(.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)-.1163552835*exp(-.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)-.3490658505*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)-.1163552835*exp(-.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)+.1163552835*exp(-.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)+.1163552835*exp(.2222222222*omega*(cos(theta)-18.))*omega*cos(theta)+.1163552835*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*cos(theta)-.3490658505*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)-.4654211340*exp(-(2/9)*omega*cos(theta))*omega^4*cos(theta)-.4654211340*exp((2/9)*omega*cos(theta))*omega^4*cos(theta)+.4654211340*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*cos(theta)-.1163552835*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*cos(theta)-.1163552835*exp(.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)+.4654211340*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*cos(theta)-.1163552835*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*cos(theta)-.1163552835*exp(-.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)))*cos((2/9)*omega*sin(theta))*E/(-16.*omega^2+exp(4*omega)-2.+exp(-4.*omega))-(0.3536776512e-1*(-3.141592654*exp(.1111111111*omega*(2.*cos(theta)-9.))*F[2]-.5235987758*exp(.1111111111*omega*(2.*cos(theta)-9.))*G[2]-1.570796327*exp(.2222222222*omega*(cos(theta)-9.))*H[3]-.2617993879*exp(.2222222222*omega*(cos(theta)-9.))*J[3]+1.570796327*exp(.2222222222*omega*(cos(theta)-18.))*H[3]+.2617993879*exp(.2222222222*omega*(cos(theta)-18.))*J[3]+1.570796327*exp(.2222222222*omega*(cos(theta)-27.))*H[3]+.2617993879*exp(.2222222222*omega*(cos(theta)-27.))*J[3]+.2617993879*exp(-(2/9)*omega*cos(theta))*J[3]-.2617993879*exp((2/9)*omega*cos(theta))*J[3]+1.570796327*exp(-(2/9)*omega*cos(theta))*H[3]-1.570796327*exp((2/9)*omega*cos(theta))*H[3]+3.141592654*exp(-.1111111111*omega*(2.*cos(theta)-9.))*F[2]+.5235987758*exp(-.1111111111*omega*(2.*cos(theta)-9.))*G[2]+3.141592654*exp(-.1111111111*omega*(2.*cos(theta)+45.))*F[2]+.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+45.))*G[2]-3.141592654*exp(-.1111111111*omega*(2.*cos(theta)+9.))*F[2]+.5235987758*exp(.1111111111*omega*(2.*cos(theta)+9.))*G[2]+3.141592654*exp(.1111111111*omega*(2.*cos(theta)-45.))*F[2]+.5235987758*exp(.1111111111*omega*(2.*cos(theta)-45.))*G[2]+3.141592654*exp(.1111111111*omega*(2.*cos(theta)+9.))*F[2]+4.000000000*10^(-10)*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^2*cos(theta)*F[2]+12.56637062*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^3*F[2]+12.56637062*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^3*F[2]+28.27433390*exp(.2222222222*omega*(cos(theta)-27.))*omega^4*H[3]+2.356194492*exp(.2222222222*omega*(cos(theta)-27.))*omega^5*J[3]+5.585053608*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^5*G[2]+50.26548247*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^4*F[2]-12.56637062*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*F[2]-9.424777961*exp(.2222222222*omega*(cos(theta)-9.))*omega*H[3]-3.141592654*exp(.1111111111*omega*(2.*cos(theta)-27.))*F[2]-.5235987758*exp(.1111111111*omega*(2.*cos(theta)-27.))*G[2]-.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+9.))*G[2]+1.570796327*exp(-.2222222222*omega*(cos(theta)+9.))*H[3]+.2617993879*exp(-.2222222222*omega*(cos(theta)+9.))*J[3]-1.570796327*exp(-.2222222222*omega*(cos(theta)+18.))*H[3]-.2617993879*exp(-.2222222222*omega*(cos(theta)+18.))*J[3]-1.570796327*exp(-.2222222222*omega*(cos(theta)+27.))*H[3]-.2617993879*exp(-.2222222222*omega*(cos(theta)+27.))*J[3]-3.141592654*exp(-.1111111111*omega*(2.*cos(theta)+27.))*F[2]-.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+27.))*G[2]-1.396263402*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^4*G[2]-5.497787146*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*J[3]-14.13716694*exp(.2222222222*omega*(cos(theta)-27.))*omega^2*H[3]-4.712388982*exp(.2222222222*omega*(cos(theta)-27.))*omega^3*H[3]-4.188790206*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*G[2]+23.56194490*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*H[3]+47.12388982*exp(.2222222222*omega*(cos(theta)-18.))*omega^4*H[3]+3.141592654*exp(.2222222222*omega*(cos(theta)-18.))*omega^4*J[3]+37.69911184*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*F[2]+65.97344574*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*H[3]-3.141592654*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*J[3]-2.356194492*exp(.2222222222*omega*(cos(theta)-9.))*omega^5*J[3]+2.356194492*exp(.2222222222*omega*(cos(theta)-18.))*omega^5*J[3]-1.396263402*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^4*G[2]-25.13274122*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*F[2]+1.047197552*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*G[2]+15.70796327*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*F[2]+.5235987758*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*G[2]-2.617993879*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*G[2]+3.141592654*exp(.2222222222*omega*(cos(theta)-27.))*omega*H[3]+.5235987758*exp(.2222222222*omega*(cos(theta)-27.))*omega*J[3]-3.141592654*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*F[2]-12.56637062*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^3*F[2]-4.188790206*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^3*G[2]-1.570796327*exp(.2222222222*omega*(cos(theta)-9.))*omega*J[3]+32.98672287*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*H[3]+.7853981636*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*J[3]-.5235987758*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*J[3]-4.188790206*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*J[3]-17.27875960*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*H[3]-5.235987758*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*G[2]-10.99557429*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*H[3]+.5235987758*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega*G[2]+12.56637062*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*F[2]-1.800000000*10^(-9)*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^2*F[2]-1.800000000*10^(-9)*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^2*F[2]-4.000000000*10^(-10)*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^2*cos(theta)*F[2]-50.26548247*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^4*F[2]+1.047197552*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*G[2]-1.047197552*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^2*G[2]-113.0973355*exp(.2222222222*omega*(cos(theta)-9.))*omega^5*H[3]-113.0973355*exp(.2222222222*omega*(cos(theta)-18.))*omega^5*H[3]+1.570796327*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*G[2]-9.424777961*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega*F[2]-3.141592654*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*F[2]-.7853981636*exp(.2222222222*omega*(cos(theta)-27.))*omega^3*J[3]+1.396263402*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^4*G[2]+1.396263402*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^4*G[2]-9.424777964*exp(.2222222222*omega*(cos(theta)-9.))*omega^6*J[3]-9.424777964*exp(.2222222222*omega*(cos(theta)-18.))*omega^6*J[3]-5.585053608*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^5*G[2]+50.26548247*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^4*F[2]+5.585053608*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^5*G[2]-28.27433390*exp(-.2222222222*omega*(cos(theta)+27.))*omega^4*H[3]-2.356194492*exp(-.2222222222*omega*(cos(theta)+27.))*omega^5*J[3]+.7853981636*exp(-.2222222222*omega*(cos(theta)+27.))*omega^3*J[3]+1.396263402*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^4*G[2]+1.396263402*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^4*G[2]-12.56637062*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*F[2]+9.424777961*exp(-.2222222222*omega*(cos(theta)+9.))*omega*H[3]+1.570796327*exp(-.2222222222*omega*(cos(theta)+9.))*omega*J[3]-32.98672287*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*H[3]-.7853981636*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*J[3]+.5235987758*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*J[3]+4.188790206*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*J[3]+17.27875960*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*H[3]-5.235987758*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*G[2]+10.99557429*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*H[3]+.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega*G[2]+12.56637062*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*F[2]+113.0973355*exp(-.2222222222*omega*(cos(theta)+9.))*omega^5*H[3]+113.0973355*exp(-.2222222222*omega*(cos(theta)+18.))*omega^5*H[3]+1.047197552*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*G[2]-1.047197552*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^2*G[2]-5.585053608*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^5*G[2]-50.26548247*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^4*F[2]+9.424777964*exp(-.2222222222*omega*(cos(theta)+9.))*omega^6*J[3]+9.424777964*exp(-.2222222222*omega*(cos(theta)+18.))*omega^6*J[3]-3.141592654*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*F[2]+1.570796327*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*G[2]-9.424777961*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega*F[2]+2.356194492*exp(-.2222222222*omega*(cos(theta)+9.))*omega^5*J[3]-2.356194492*exp(-.2222222222*omega*(cos(theta)+18.))*omega^5*J[3]-1.396263402*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^4*G[2]-65.97344574*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*H[3]+3.141592654*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*J[3]-47.12388982*exp(-.2222222222*omega*(cos(theta)+18.))*omega^4*H[3]-3.141592654*exp(-.2222222222*omega*(cos(theta)+18.))*omega^4*J[3]+37.69911184*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*F[2]-4.188790206*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*G[2]-23.56194490*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*H[3]+5.497787146*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*J[3]+14.13716694*exp(-.2222222222*omega*(cos(theta)+27.))*omega^2*H[3]+4.712388982*exp(-.2222222222*omega*(cos(theta)+27.))*omega^3*H[3]-1.396263402*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^4*G[2]-12.56637062*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^3*F[2]-4.188790206*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^3*G[2]-3.141592654*exp(-.2222222222*omega*(cos(theta)+27.))*omega*H[3]-.5235987758*exp(-.2222222222*omega*(cos(theta)+27.))*omega*J[3]-3.141592654*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*F[2]-2.617993879*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*G[2]+15.70796327*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*F[2]+.5235987758*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*G[2]-25.13274122*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*F[2]+1.047197552*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*G[2]+12.56637062*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^3*F[2]+12.56637062*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^3*F[2]+1.047197551*exp(-(2/9)*omega*cos(theta))*omega^2*cos(theta)*H[3]+.1745329253*exp(-(2/9)*omega*cos(theta))*omega^2*cos(theta)*J[3]-5.235987755*exp(-(2/9)*omega*cos(theta))*omega^3*cos(theta)*H[3]+.1745329253*exp(-(2/9)*omega*cos(theta))*omega^3*cos(theta)*J[3]+.5235987760*exp(-(2/9)*omega*cos(theta))*omega^5*cos(theta)*J[3]+6.283185310*exp(-(2/9)*omega*cos(theta))*omega^4*cos(theta)*H[3]+.3490658504*exp(-(2/9)*omega*cos(theta))*omega*cos(theta)*H[3]+0.5817764175e-1*exp(-(2/9)*omega*cos(theta))*omega*cos(theta)*J[3]+1.047197551*exp((2/9)*omega*cos(theta))*omega^2*cos(theta)*H[3]+.1745329253*exp((2/9)*omega*cos(theta))*omega^2*cos(theta)*J[3]-5.235987755*exp((2/9)*omega*cos(theta))*omega^3*cos(theta)*H[3]+.1745329253*exp((2/9)*omega*cos(theta))*omega^3*cos(theta)*J[3]+.5235987760*exp((2/9)*omega*cos(theta))*omega^5*cos(theta)*J[3]+6.283185310*exp((2/9)*omega*cos(theta))*omega^4*cos(theta)*H[3]+.3490658504*exp((2/9)*omega*cos(theta))*omega*cos(theta)*H[3]+0.5817764175e-1*exp((2/9)*omega*cos(theta))*omega*cos(theta)*J[3]+6.283185307*exp(-(2/9)*omega*cos(theta))*omega*H[3]+1.047197552*exp(-(2/9)*omega*cos(theta))*omega*J[3]+.7853981636*exp(-(2/9)*omega*cos(theta))*omega^3*J[3]-4.712388980*exp(-(2/9)*omega*cos(theta))*omega^2*H[3]+1.570796327*exp(-(2/9)*omega*cos(theta))*omega^2*J[3]-23.56194490*exp(-(2/9)*omega*cos(theta))*omega^3*H[3]+2.356194492*exp(-(2/9)*omega*cos(theta))*omega^5*J[3]+28.27433390*exp(-(2/9)*omega*cos(theta))*omega^4*H[3]-6.283185307*exp((2/9)*omega*cos(theta))*omega*H[3]-1.047197552*exp((2/9)*omega*cos(theta))*omega*J[3]-.7853981636*exp((2/9)*omega*cos(theta))*omega^3*J[3]+4.712388980*exp((2/9)*omega*cos(theta))*omega^2*H[3]-1.570796327*exp((2/9)*omega*cos(theta))*omega^2*J[3]+23.56194490*exp((2/9)*omega*cos(theta))*omega^3*H[3]-2.356194492*exp((2/9)*omega*cos(theta))*omega^5*J[3]-28.27433390*exp((2/9)*omega*cos(theta))*omega^4*H[3]+2.792526803*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*F[2]-.2327105670*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*G[2]+.3490658504*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*cos(theta)*H[3]+2.792526804*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^3*cos(theta)*F[2]-25.13274123*exp(-.2222222222*omega*(cos(theta)+18.))*omega^5*cos(theta)*H[3]-.5235987760*exp(-.2222222222*omega*(cos(theta)+18.))*omega^5*cos(theta)*J[3]-11.17010721*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^4*cos(theta)*F[2]+.3102807560*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^4*cos(theta)*G[2]-27.22713633*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*cos(theta)*H[3]+.6981317013*exp(-.2222222222*omega*(cos(theta)+9.))*omega^4*cos(theta)*J[3]+.5235987760*exp(-.2222222222*omega*(cos(theta)+27.))*omega^5*cos(theta)*J[3]-1.047197551*exp(-.2222222222*omega*(cos(theta)+27.))*omega^3*cos(theta)*H[3]-.1745329253*exp(-.2222222222*omega*(cos(theta)+27.))*omega^3*cos(theta)*J[3]+6.283185310*exp(-.2222222222*omega*(cos(theta)+27.))*omega^4*cos(theta)*H[3]-1.241123024*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^5*cos(theta)*G[2]-11.17010721*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^4*cos(theta)*F[2]-.3102807560*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^4*cos(theta)*G[2]-1.047197551*exp(-.2222222222*omega*(cos(theta)+27.))*omega^2*cos(theta)*H[3]-.1745329253*exp(-.2222222222*omega*(cos(theta)+27.))*omega^2*cos(theta)*J[3]-2.792526803*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*F[2]-.6981317013*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^2*cos(theta)*G[2]+5.585053605*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*cos(theta)*F[2]+.3490658504*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*cos(theta)*H[3]+0.5817764175e-1*exp(-.2222222222*omega*(cos(theta)+18.))*omega^2*cos(theta)*J[3]+2.094395103*exp(-.2222222222*omega*(cos(theta)+9.))*omega^6*cos(theta)*J[3]-2.094395103*exp(-.2222222222*omega*(cos(theta)+18.))*omega^6*cos(theta)*J[3]-1.241123024*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^5*cos(theta)*G[2]+25.13274123*exp(-.2222222222*omega*(cos(theta)+9.))*omega^5*cos(theta)*H[3]-.5235987760*exp(-.2222222222*omega*(cos(theta)+9.))*omega^5*cos(theta)*J[3]-.6981317013*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)*F[2]-.1163552835*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega*cos(theta)*G[2]-2.792526803*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*F[2]+.2327105670*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*G[2]-.3490658504*exp(-.2222222222*omega*(cos(theta)+18.))*omega*cos(theta)*H[3]-0.5817764175e-1*exp(-.2222222222*omega*(cos(theta)+18.))*omega*cos(theta)*J[3]-.3490658504*exp(-.2222222222*omega*(cos(theta)+27.))*omega*cos(theta)*H[3]-0.5817764175e-1*exp(-.2222222222*omega*(cos(theta)+27.))*omega*cos(theta)*J[3]-.6981317013*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*F[2]-.1163552835*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*G[2]+.3490658504*exp(-.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)*H[3]+0.5817764175e-1*exp(-.2222222222*omega*(cos(theta)+9.))*omega*cos(theta)*J[3]-.1163552835*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*G[2]-.6981317013*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega*cos(theta)*F[2]+2.792526804*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*F[2]+9.424777960*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*cos(theta)*H[3]-2.094395101*exp(.2222222222*omega*(cos(theta)-18.))*omega^4*cos(theta)*H[3]+.6981317013*exp(.2222222222*omega*(cos(theta)-18.))*omega^4*cos(theta)*J[3]+2.443460953*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)*H[3]+.4072434923*exp(.2222222222*omega*(cos(theta)-9.))*omega^2*cos(theta)*J[3]-2.792526804*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*F[2]-.6981317013*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega*cos(theta)*F[2]-.1745329253*exp(.2222222222*omega*(cos(theta)-27.))*omega^2*cos(theta)*J[3]+2.792526803*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*F[2]+.6981317013*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^2*cos(theta)*G[2]-5.585053605*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*cos(theta)*F[2]-.2327105670*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^2*cos(theta)*G[2]+2.792526803*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^3*cos(theta)*F[2]-.9308422680*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^3*cos(theta)*G[2]+.3102807560*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^4*cos(theta)*G[2]-.3102807560*exp(.1111111111*omega*(2.*cos(theta)+9.))*omega^4*cos(theta)*G[2]-.2327105670*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega^2*cos(theta)*G[2]-13.96263402*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*F[2]+.9308422680*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^3*cos(theta)*G[2]+5.235987755*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)*H[3]+.5235987760*exp(.2222222222*omega*(cos(theta)-18.))*omega^3*cos(theta)*J[3]+.8726646260*exp(.2222222222*omega*(cos(theta)-9.))*omega^3*cos(theta)*J[3]+2.094395103*exp(.2222222222*omega*(cos(theta)-9.))*omega^6*cos(theta)*J[3]-2.094395103*exp(.2222222222*omega*(cos(theta)-18.))*omega^6*cos(theta)*J[3]+1.241123024*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^5*cos(theta)*G[2]+25.13274123*exp(.2222222222*omega*(cos(theta)-9.))*omega^5*cos(theta)*H[3]-.5235987760*exp(.2222222222*omega*(cos(theta)-9.))*omega^5*cos(theta)*J[3]-25.13274123*exp(.2222222222*omega*(cos(theta)-18.))*omega^5*cos(theta)*H[3]-.5235987760*exp(.2222222222*omega*(cos(theta)-18.))*omega^5*cos(theta)*J[3]+11.17010721*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^4*cos(theta)*F[2]-.3102807560*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega^4*cos(theta)*G[2]-27.22713633*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*cos(theta)*H[3]+.6981317013*exp(.2222222222*omega*(cos(theta)-9.))*omega^4*cos(theta)*J[3]+.5235987760*exp(.2222222222*omega*(cos(theta)-27.))*omega^5*cos(theta)*J[3]-1.047197551*exp(.2222222222*omega*(cos(theta)-27.))*omega^3*cos(theta)*H[3]-.1745329253*exp(.2222222222*omega*(cos(theta)-27.))*omega^3*cos(theta)*J[3]+6.283185310*exp(.2222222222*omega*(cos(theta)-27.))*omega^4*cos(theta)*H[3]+1.241123024*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^5*cos(theta)*G[2]+11.17010721*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^4*cos(theta)*F[2]+.3102807560*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega^4*cos(theta)*G[2]-1.047197551*exp(.2222222222*omega*(cos(theta)-27.))*omega^2*cos(theta)*H[3]-2.792526804*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^3*cos(theta)*F[2]+.8726646260*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)*J[3]+.6981317013*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*F[2]+.1163552835*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*G[2]+.6981317013*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega*cos(theta)*F[2]+.1163552835*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega*cos(theta)*G[2]-.1163552835*exp(.1111111111*omega*(2.*cos(theta)-45.))*omega*cos(theta)*G[2]+.2327105670*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^2*cos(theta)*G[2]-2.792526803*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^3*cos(theta)*F[2]+.9308422680*exp(-.1111111111*omega*(2.*cos(theta)+27.))*omega^3*cos(theta)*G[2]-.3102807560*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^4*cos(theta)*G[2]+.3102807560*exp(-.1111111111*omega*(2.*cos(theta)-9.))*omega^4*cos(theta)*G[2]+.2327105670*exp(-.1111111111*omega*(2.*cos(theta)+45.))*omega^2*cos(theta)*G[2]+13.96263402*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*F[2]-.9308422680*exp(-.1111111111*omega*(2.*cos(theta)+9.))*omega^3*cos(theta)*G[2]+5.235987755*exp(-.2222222222*omega*(cos(theta)+9.))*omega^3*cos(theta)*H[3]+.5235987760*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*cos(theta)*J[3]+.6981317013*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)*F[2]+.1163552835*exp(.1111111111*omega*(2.*cos(theta)-27.))*omega*cos(theta)*G[2]+9.424777960*exp(-.2222222222*omega*(cos(theta)+18.))*omega^3*cos(theta)*H[3]-2.094395101*exp(-.2222222222*omega*(cos(theta)+18.))*omega^4*cos(theta)*H[3]+.6981317013*exp(-.2222222222*omega*(cos(theta)+18.))*omega^4*cos(theta)*J[3]+2.443460953*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)*H[3]+.4072434923*exp(-.2222222222*omega*(cos(theta)+9.))*omega^2*cos(theta)*J[3]+0.5817764175e-1*exp(.2222222222*omega*(cos(theta)-18.))*omega^2*cos(theta)*J[3]+.6981317013*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*F[2]+.1163552835*exp(.1111111111*omega*(2.*cos(theta)-9.))*omega*cos(theta)*G[2]+.3490658504*exp(.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)*H[3]+0.5817764175e-1*exp(.2222222222*omega*(cos(theta)-9.))*omega*cos(theta)*J[3]-.3490658504*exp(.2222222222*omega*(cos(theta)-18.))*omega*cos(theta)*H[3]-0.5817764175e-1*exp(.2222222222*omega*(cos(theta)-18.))*omega*cos(theta)*J[3]-.3490658504*exp(.2222222222*omega*(cos(theta)-27.))*omega*cos(theta)*H[3]-0.5817764175e-1*exp(.2222222222*omega*(cos(theta)-27.))*omega*cos(theta)*J[3]))*cos((2/9)*omega*sin(theta))/(-16.*omega^2+exp(4*omega)-2.+exp(-4.*omega))]:
t:=coeff(t1,A);
 

 

## but i'm getting the error "Error, unable to compute coeff". Please help me!

 

 

How I can differential with respect to the constant Amnr], Bmnr], Cmnr]


 

e := mu*(((cosh(eta)-cos(theta))/a)^2*(diff(`U__η`(eta, `ϕ`, theta), eta, eta))+(1-cosh(eta)*cos(theta))*(cosh(eta)-cos(theta))*(diff(`U__η`(eta, `ϕ`, theta), eta))/(a^2*sinh(eta))+2*sinh(eta)*(cosh(eta)-cos(theta))*(diff(`U__θ`(eta, `ϕ`, theta), theta))/a^2)

T := proc () options operator, arrow; rho*omega^2*(int(int(int((u(eta, `ϕ`, theta)^2+v(eta, `ϕ`, theta)^2+w(eta, `ϕ`, theta)^2)*a^3*sinh(eta)/(cosh(eta)-cos(`ϕ`))^3, theta = a .. b), eta = c .. d), `ϕ` = e .. f)) end proc

u__trial := proc (eta, `ϕ`, theta, M, N) options operator, arrow; sum(sum(sum(A[m, n, r]*u[m, n, r](eta, `ϕ`, theta), n = 1 .. N), m = 1 .. M), r = 1 .. R) end proc; v__trial := proc (eta, `ϕ`, theta, M, N) options operator, arrow; sum(sum(sum(B[m, n, r]*v[m, n, r](eta, `ϕ`, theta), n = 1 .. N), m = 1 .. M), r = 1 .. R) end proc; w__trial := proc (eta, `ϕ`, theta, M, N) options operator, arrow; sum(sum(sum(C[m, n, r]*w[m, n, r](eta, `ϕ`, theta), n = 1 .. N), m = 1 .. M), r = 1 .. R) end proc

proc (eta, varphi, theta, M, N) options operator, arrow; sum(sum(sum(C[m, n, r]*w[m, n, r](eta, varphi, theta), n = 1 .. N), m = 1 .. M), r = 1 .. R) end proc

(1)

L := e-T()

"(∂)/(∂ A[m,n,r])L"

``

``

``

``

``

``

``

``


 

Download

 

How I can plot torus structure in the following code instead of cylindrical.

Thanks.


 

"U[1,6](x,theta):=0.03215257166 (sin(-2.350000000+9.400000000 x)-0.1369508410 sinh(-2.350000000+9.400000000 x)) cos(6 theta):"

 

 

with(plots)

[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot]

(1)

cylinderplot(U[1, 6](x, theta)-.1, theta = 0 .. 2*Pi, x = 0 .. .5, grid = [50, 50])

 

torus

torus

(2)

``


 

Download toro.mw

 

 

\Hello,

How I can solve this algebraic to find unknowns ABCD?

I want to gain ABCD automatically without input the coefficients in rule by hand.

Because I should run the code for many input data

Thanks


 

restart;

l:=0.5;a:=0.1; rho:=2700;h:=.0005;
E:=72.4*10^9;v:= 0.3;
n:=6;
m:=1;

AD:=10;
mu:=(2*a*2.35)/l;
nu:=sin(mu*l/(2*a))/sinh(mu*l/(2*a)); omega[m,n]:= 3067.173621;

.5

 

.1

 

2700

 

0.5e-3

 

0.7240000000e11

 

.3

 

6

 

1

 

10

 

.9400000000

 

.1369508410

 

3067.173621

(1)

 

E:=1:k[1,1]:=-5.660173062*10^10:k[1,2]:=-2.8552873062*10^10:k[1,3]:=-8.68528173062*10^10:k[1,4]:=-7.6788528173062*10^10:k[1,5]:=-1.52568528173062*10^10:k[2,1]:=-15.660173062*10^10:k[2,2]:=-21.8552873062*10^10:k[2,3]:=-18.68528173062*10^10:k[2,4]:=-71.6788528173062*10^10:k[2,5]:=-10.52568528173062*10^10:
k[3,1]:=-5.65257260173062*10^10:k[3,2]:=-27.8552552873062*10^10:k[3,3]:=-81.6854428173062*10^10:k[3,4]:=-9.67858528173062*10^10:k[3,5]:=-3.52568528173062*10^10:
k[4,1]:=-51.111660173062*10^10:k[4,2]:=-21.811552873062*10^10:k[4,3]:=-18.68528173062*10^10:k[4,4]:=-17.6788528173062*10^10:k[4,5]:=-11.52568528173062*10^10:
k[5,1]:=-6.660173062*10^10:k[5,2]:=-61.852873062*10^10:k[5,3]:=-82.68528173062*10^10:k[5,4]:=-72.6788528173062*10^10:k[5,5]:=-21.52568528173062*10^10

-0.2152568528e12

(2)

 

 

S:=(Matrix([[rho*h*omega[m,n]^2+k[1, 1],k[1,2],k[1,3],k[1,4]],[k[2,1],rho*h*omega[m,n]^2+k[2,2],k[2,3],k[2,4]],[k[3,1],k[3,2],k[3,3]+rho*h*omega[m,n]^2,k[3,4]],[k[4,1],k[4,2],k[4,3],k[4,4]+rho*h*omega[m,n]^2]])).(Vector(1..4,[[A],[B],[C],[D]]))=-E*(Vector(1..4,[k[1,5],k[2, 5],k[3,5],k[4,5]]));

(Vector(4, {(1) = -0.5658903042e11*A-0.2855287306e11*B-0.8685281731e11*C-0.7678852817e11*D, (2) = -0.1566017306e12*A-0.2185401729e12*B-0.1868528173e12*C-0.7167885282e12*D, (3) = -0.5652572602e11*A-0.2785525529e12*B-0.8168417280e12*C-0.9678585282e11*D, (4) = -0.5111166017e12*A-0.2181155287e12*B-0.1868528173e12*C-0.1767758280e12*D})) = (Vector(4, {(1) = 0.1525685282e11, (2) = 0.1052568528e12, (3) = 0.3525685282e11, (4) = 0.1152568528e12}))

(3)

``


 

Download solve.mw

 

 

 

restart; interface(rtablesize = 10): _EnvHorizontalName := 'x': _EnvVerticalName := 'y': eqPA := (y-b0)/(x-a0) = k: solPA := y=solve(eqPA, y): #k coefficient directeur de PA eqPB := (y-b0)/(x-a0) = -1/k: solPB :=y= solve(eqPB, y):#PB perpendicalaire à PA xA := solve(subs(y = 0, eqPA), x): yB := solve(subs(x = 0, eqPB), y): eqAB := x/xA+y/yB = 1; x k y k eqAB := --------- + --------- = 1 a0 k - b0 b0 k + a0 t := solve(a*(xM+(1/2)*t*a)+b*(yM+(1/2)*t*b)+c = 0, t); 2 (a xM + b yM + c) t := - ------------------- 2 2 a + b #Recherche des coordonnées de la projection d'un point sur une droite D #M(x,y)un point quelconque du plan, M'(x',y') son symé trique dans la symétrie orthogonale d'axe D #le vecteur MM' est colinéaire du vecteur normal n de D; vec(MM')=t.vec(n), n=

Hi everybody,

Im trying to solve the following trivial pde using Maple 2018

pdsolve([diff(Y(x, t), t, t) = 0, Y(x, 0) = 0, (D[2](Y))(x, 1) = 0]);

Obviuosly the solution is Y(x, t) = 0, but Mapple 2018 is not giving any answer.

This works in Maple 2015.

Why is not working in Maple 2018?

Thanks,

Javier

 

Hello,

What means, please, this error

 

Error, (in RootFinding:-Analytic) Maple was unable to allocate enough memory to complete this computation.  Please see ?alloc
 

 

What should I to do to overcome this error?

restart;

##########  omega and theta are variables,where J[3],F[2],H[2],etc are constants.

#### I tried with "evlf" and "evlc" command but maple was not ready to provide the solution,please help me to solve this

t1:=-1/(-16.*omega^2+exp(-4*omega)+exp(4*omega)-2.)*(-(0.5817764173e-1*I)*exp((2/9)*omega*cos(theta))*omega^5*cos(theta)*J[3]-(.6981317009*I)*exp((2/9)*omega*cos(theta))*omega^4*cos(theta)*H[3]-0.4524927691e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^3*G[3]-.6205615118*exp(.1111111111*omega*(2.*cos(theta)-9.))*cos(theta)*omega^3*H[2]+.6205615118*exp(.1111111111*omega*(2.*cos(theta)-9.))*cos(theta)*omega^3*F[2]+.9308422676*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^4*H[3]-.1034269187*exp(.1111111111*omega*(2.*cos(theta)-9.))*cos(theta)*omega^3*G[2]-0.7757018900e-1*exp(.1111111111*omega*(2.*cos(theta)-9.))*cos(theta)*omega^2*G[2]-0.7757018898e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^4*J[3]-0.9696273622e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^3*J[3]-0.4524927691e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^2*J[3]-.2714956613*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^2*H[3]-0.7757018898e-1*exp(.2222222222*omega*(cos(theta)-9.))*cos(theta)*omega^4*G[3]+0.8726646261e-1*exp((2/9)*omega*cos(theta))*omega^3*J[3])*cos((2/9)*omega*sin(theta));

t2:=int(int(t1,omega=0..infinity),theta=0..2*Pi);

 

 

Dear Sir,

I have a question: I have an analytic function depending on a real parameter that is of the form  F_y (z) with y>0 and z is complex.

 

I search the zeros  of F_y(z), that is the complex z staisfying F_y(z)=0. I used  the Maple function

RootFinding:-Analytic(F, z, re = -5 .. 0, im = -100 .. 100, );

but he displays me an error message  "Error, (in RootFinding:-Analytic) the function, -(100+I*z)^(1/2)*(80-I*z)^2*cosh((1/150)*(100-I*z)^(1/2)*Pi)*sinh((1/150)*(100+I*z)^(1/2)*Pi)+(100-I*z)^(1/2)*(80+I*z)^2*cosh((1/150)*(100+I*z)^(1/2)*Pi)*sinh((1/150)*(100-I*z)^(1/2)*Pi)+(2*I)*y*z^2*cosh((1/150)*(100-I*z)^(1/2)*Pi)*cosh((1/150)*(100+I*z)^(1/2)*Pi), depends on more than one variable: {y, z}. "

 

Can you help me to resolve my problem?

 

 

Best regards,

Zayd.

Hi,

I am trying to find p and q from this simultaneous equation as a function of system parameters. I do not know the parameters and I need an expression. But Maple simply just gives p=0 and q=0 as an answer

Eq1:=61*q*L__1^2*C*e*eta/(16*omega__n^2)+5*q*L__1^2*C*e^3*eta^3/(8*omega__n^4)+3*C*p^3*gamma__1*(1/4)+3*q*C*p^2*R__n/(4*omega__n)+q*L__1^2*C*e^4*eta^4/(16*omega__n^5)+145*q*L__1^2*C/(64*omega__n)+3*q^3*C*R__n/(4*omega__n)+3*p*C*q^2*gamma__1*(1/4)+q*R*C/(4*omega__n)+19*q*L__1^2*C*e^2*eta^2/(8*omega__n^3):
Eq2:=-3*C*p^3*R__n/(4*omega__n)-3*p*C*q^2*R__n/(4*omega__n)-p*L__1^2*C*e^4*eta^4/(16*omega__n^5)-5*p*L__1^2*C*e^3*eta^3/(8*omega__n^4)-19*p*L__1^2*C*e^2*eta^2/(8*omega__n^3)-61*p*L__1^2*C*e*eta/(16*omega__n^2)-145*p*L__1^2*C/(64*omega__n)-p*R*C/(4*omega__n)+3*q*C*p^2*gamma__1*(1/4)+3*q^3*C*gamma__1*(1/4):
sys := { Eq1 , Eq2 };solve( sys, {p,q} );

Is there any way to help Maple to try other conditions, I know the only solution should not be just p=0 and q=0.

Thanks,

Baharm31

 

 

Hi,

I do not really understand the difference between annrow operator and unapply.
From the help pages it seems that unapply "creates" an arrow operator and thus that they could be two different ways to do the same thing.


restart:

f := x[1]+y[1]:

a := indets(f):                  # just because f can be more complex than the f above
g := (op(a)) -> f;              # generates an error, "operators not of a symbol type"
h := unapply(f, (op(a)))   # ok, but with a strange output
     h := (x__1, y__1) -> x__1+y__1

So it seems that Maple has transform by itself the indexed x[1] and y[1] into symbols x__1 and y__1.

Could you explain me what happened exactly ?

TIA

Assume we have an expression in several variables, x,y,z,..., where all of them are function of one parameter, t, for an example consider the following simple expression;

f := 2*y(t)*(diff(x(t), t))^2+3*(diff(x(t), t$3))-3*x(t)*(diff(y(t), t));

Is there any command or a way to ask Maple to give the highest order of derivation of x or y with respect to t in the expression? For example in the above example, the answer for x is 3 and for y is 1. If we remove the second term, then the answer for x should be 1.

Hello!

I am truing to simplify kretchmann variable in the following worksheet:

 

 
M > 

# Obtaining Ricci and Kretchmann;
with(DifferentialGeometry):with(Tensor):

DGsetup([t, r, theta, phi], M);
g := evalDG(-(1-2*M*mu/r)^(1/mu)*dt &t dt+(1-2*M*mu/r)^(-1/mu)*`&t`(dr, dr)+r^2*(1-2*M*mu/r)^(1-1/mu)*(`&t`(dtheta, dtheta)+sin(theta)^2*`&t`(dphi, dphi)));
C := Christoffel(g):

`frame name: M`

 

_DG([["tensor", M, [["cov_bas", "cov_bas"], []]], [[[1, 1], -(-(2*M*mu-r)/r)^(1/mu)], [[2, 2], (-(2*M*mu-r)/r)^(-1/mu)], [[3, 3], r^2*(-(2*M*mu-r)/r)^((mu-1)/mu)], [[4, 4], r^2*(-(2*M*mu-r)/r)^((mu-1)/mu)*sin(theta)^2]]])

(1.1)

Rie := CurvatureTensor(C):
R := RicciScalar(g,Rie);
h := InverseMetric(g):
kretchmann := ContractIndices(RaiseLowerIndices(g, Rie, [1]), RaiseLowerIndices(h, Rie, [2, 3, 4]), [[1, 1], [2, 2], [3, 3], [4, 4]]);

2*(-(2*M*mu-r)/r)^(1/mu)*M^2*(mu^2-1)/(r^2*(2*M*mu-r)^2)

 

4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu^2+2*M*mu+M-2*r)^2/(r^6*(2*M*mu-r)^2)+4*(-(2*M*mu-r)/r)^(2/mu)*M^2*(M*mu^2+M*mu-r)^2/((2*M*mu-r)^4*r^4)+20*(-(2*M*mu-r)/r)^(2/mu)*(M*mu+M-r)^2*M^2/((2*M*mu-r)^4*r^4)+4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu^2+M*mu-r)^2/(r^6*(2*M*mu-r)^2)+4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu+M-r)^2/(r^6*(2*M*mu-r)^2)

(1.2)
M > 

# simplification

M > 

simplify(normal(R),symbolic)

2*(-1)^(1/mu)*(2*M*mu-r)^((1-2*mu)/mu)*r^((-1-2*mu)/mu)*M^2*(mu^2-1)

(1.3)
M > 

simplify(kretchmann,size,symbolic)

4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu^2+2*M*mu+M-2*r)^2/(r^6*(2*M*mu-r)^2)+4*(-(2*M*mu-r)/r)^(2/mu)*M^2*(M*mu^2+M*mu-r)^2/((2*M*mu-r)^4*r^4)+20*(-(2*M*mu-r)/r)^(2/mu)*(M*mu+M-r)^2*M^2/((2*M*mu-r)^4*r^4)+4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu^2+M*mu-r)^2/(r^6*(2*M*mu-r)^2)+4*(-(2*M*mu-r)/r)^(-2*(mu-1)/mu)*M^2*(M*mu+M-r)^2/(r^6*(2*M*mu-r)^2)

(1.4)
M > 

 


 

Download RicciScalarKretchmann.mw

The problem is that I cannot obtain a good form of it. With Mathematica FullSimplify[] function I got the following form (LaTeX code incoming): $K =& 4 M^2 \Bigl(A-B r+C r^2\Bigr)(r-2 M \mu)^{\frac{2}{\mu}-4}r^{-\frac{2}{\mu}-4},\
    A =&M^2 (\mu (3 \mu+2)+7) (\mu+1)^2,\,B = 8 M (\mu+2) (\mu+1),\, C = 12$, i.e. terms $(r-2 M \mu)$ and $r$ got fully factorized. However, I could never achieve the same form in Maple. Any help?


I am sorry if this is a silly and many-times-answered question, but I tried consulting with Maple help and googling solutions without any success.

Regards,
Nick

Exercises solved online with Maple exclusively in space. I attach the explanation links on my YouTube channel.

Part # 01

https://www.youtube.com/watch?v=8Aa2xzU8LwQ

Part # 02

https://www.youtube.com/watch?v=qyGT28CeSz4

Part # 03

https://www.youtube.com/watch?v=yf8rjSPbv5g

Part # 04

https://www.youtube.com/watch?v=FwHPW7ncZTg

Part # 05

https://www.youtube.com/watch?v=bm3frpukb0I

Link for download the file:

Vector_Exercises-Force_in_space.mw

Lenin AC

Ambassador of Maple

 

 

 


 

restart:
with(LinearAlgebra):
with(plots):
with(geometry):
with(plottools): # On appelle alpha la moitié de l'angle de rotation de la roue menée par tour de roue menante. alpha=Pi/n en raduans soit Pi/5=36° pour 5 rainures.. On a alors les relations suivantes entre l'entaxe E, le rayon de la roue ùenante R1 et le rayon de la roue menée R2 : R1=E.sin(alpha), R2=E*cos(alpha) Intersection du cercle (O,R2) avec la droite tan(phi)x-r/cos(phi), on obtient les coordonnées de P3
sol:=allvalues(solve([tan(phi)*x-r/cos(phi)=y,y^2+x^2=R2^2],[x,y])): # Intersection de 2 cercles
sol1:=allvalues(solve([(x-E)^2+y^2=(R-a)^2,y^2+x^2=R2^2],[x,y])): # Coordonnées des points du pourtour de l'élément de croix #point(O,0,0):
phi:=Pi/5:
R2:=5:
r:=1/4:
E:=R2/cos(phi):
R:=R2*tan(phi):
a:=0.5:
[(R2/2-r)*cos(phi),(R2/2-r)*sin(phi)];
geometry[point](P1,(R2/2-r)*cos(phi),(R2/2-r)*sin(phi)):
geometry[point](P2,(R2/2)*cos(phi)+r*sin(phi),(R2/2)*sin(phi)-r*cos(phi)):

[(9/4)*cos((1/5)*Pi), (9/4)*sin((1/5)*Pi)]

xP2:=(R2/2)*cos(phi)+r*sin(phi):
yP2:=(R2/2)*sin(phi)-r*cos(phi):
xP1:=(R2/2-r)*cos(phi):
yP1:=(R2/2-r)*sin(phi): # Equation paramétrique du segment OP1 (t varie de 0 à 1) ; non pris en compte
x1:=t*(0-xP1)+xP1:
y1:=t*(0-yP1)+yP1:
n1:=5:
dt:=1/(n1-1): #t varie entre 0 et 1

for i to n1 do tau:=(i-1)*dt:
xx[i]:=evalf(subs(t=tau,x1)):
yy[i]:=evalf(subs(t=tau,y1)): #print(i,xx[i],yy[i]);
od: # Equation paramétrique du quart de cercle P1P2 de la rainure (t varie de 0 à 1)
x2:=R2/2*cos(phi)+r*cos(t): #attention au sens de rotation du parcours de l'objet
y2:=R2/2*sin(phi)+r*sin(t):
n2:=6:
dt:=Pi/2/(n2-1): #arc de Pi/2
for i to n2 do
tau:=phi-Pi+(i-1)*dt:
xx[i]:=evalf(subs(t=tau,x2)):
yy[i]:=evalf(subs(t=tau,y2)):
od:
for i to n2 do
Vector[row]([i,xx[i],yy[i]])
od:

droite:=plot((tan(phi)*x-r/cos(phi),x=0..3),linestyle=dot,color=blue):

xP3:=evalf(subs(op(1,sol[1]),x)):
yP3:=evalf(subs(op(1,sol[1]),y)):
xP2:=evalf(subs(op(1,sol[2]),x)):
yP2:=evalf(subs(op(1,sol[2]),y)):
xP4:=evalf(subs(op(1,sol1[1]),x)):
yP4:=evalf(subs(op(1,sol1[1]),y)):
xP5:=E-(R-a):
yP5:=0:
x3:=t*(xP3-xP2)+xP2:
y3:=t*(yP3-yP2)+yP2:
n3:=10:
dt:=1/(n3-1): #t varie entre 0 et 1

for i to n3 do
tau:=(i-1)*dt:
xx[i+n2]:=evalf(subs(t=tau,x3)):
yy[i+n2]:=evalf(subs(t=tau,y3)):
od:

for i to n3 do Vector[row]([i,xx[i],yy[i]]) od:

x4:=xP5+R-a+(R-a)*cos(t):#attention au sens de rotation du parcours de l'objet
y4:=(R-a)*sin(t):
n4:=11:
eta:=arcsin(yP4/(R-a)):
dt:=(-eta)/(n2-1)/2:#arc de Pi/2

for i to n4 do
tau:=(Pi+eta)+(i-1)*dt: #recherche de tau ?
xx[i+n2+n3]:=evalf(subs(t=-tau,x4)):
yy[i+n2+n3]:=evalf(subs(t=-tau,y4)):
od:

for i to n4 do
Vector[row]([i,xx[i],yy[i]])
od:

n:=n2+n3+n4;
for i to n do
Vector[row]([i,xx[i],yy[i]])
od:

27

figure:=NULL:
for i from 0 to n do
xx[0]:=0:
yy[0]:=0:
figure:=figure,[xx[i],yy[i]]:
od:

figure:=[figure]:

polygonplot(figure,scaling=constrained,color=yellow);#,view=[-0.1..5,-0.1..3]

for i to n do
X[i]:=xx[i]:
Y[i]:=yy[i]
od:

d1:=plottools[disk]([xP1,yP1],0.05,color=blue):############ non définis
d2:=plottools[disk]([xP2,yP2],0.05,color=red):############ non définis

n := 27; ##### ci-dessus, il faut arrêter le trait à l'axe Ox ############### il suffit de prendre le symétrique puis 4 rotations de Pi/5 #############
symOX:= pt -> [pt[1],-pt[2]]:
rot:=proc(t,pt) [pt[1]*cos(t)-pt[2]*sin(t),pt[1]*sin(t)+pt[2]*cos(t)]; end:
figure1:=[ op(figure),op(map(symOX,figure))]:
croix:=op(figure1):

27

for i to 4 do croix:=croix,op(map( pt -> rot(i*2*Pi/5,pt),figure1) ): od:
croix:=[croix]:
polygonplot(croix,scaling=constrained,color=yellow); #How arrange this drawning and animate it. Thank you.

 


 

Download GenovaDrive.mw

[Just in case the above is not a 100%-correct presentation of the original code, I've left it below in its origianally posted form.--Carl Love as Moderator]

restart:with(LinearAlgebra):with(plots):with(geometry):with(plottools): On appelle alpha la moitié de l'angle de rotation de la roue menée par tour de roue menante. alpha=Pi/n en raduans soit Pi/5=36° pour 5 rainures.. On a alors les relations suivantes entre l'entaxe E, le rayon de la roue ùenante R1 et le rayon de la roue menée R2 : R1=E.sin(alpha), R2=E*cos(alpha) Intersection du cercle (O,R2) avec la droite tan(phi)x-r/cos(phi), on obtient les coordonnées de P3 sol:=allvalues(solve([tan(phi)*x-r/cos(phi)=y,y^2+x^2=R2^2],[x,y])): Intersection de 2 cercles sol1:=allvalues(solve([(x-E)^2+y^2=(R-a)^2,y^2+x^2=R2^2],[x,y])): Coordonnées des points du pourtour de l'élément de croix #point(O,0,0): phi:=Pi/5:R2:=5:r:=1/4:E:=R2/cos(phi):R:=R2*tan(phi):a:=0.5: [(R2/2-r)*cos(phi),(R2/2-r)*sin(phi)]: geometry[point](P1,(R2/2-r)*cos(phi),(R2/2-r)*sin(phi)): geometry[point](P2,(R2/2)*cos(phi)+r*sin(phi),(R2/2)*sin(phi)-r*cos(phi)): xP2:=(R2/2)*cos(phi)+r*sin(phi):yP2:=(R2/2)*sin(phi)-r*cos(phi): xP1:=(R2/2-r)*cos(phi):yP1:=(R2/2-r)*sin(phi): Equation paramétrique du segment OP1 (t varie de 0 à 1) ; non pris en compte x1:=t*(0-xP1)+xP1: y1:=t*(0-yP1)+yP1: n1:=5: dt:=1/(n1-1):#t varie entre 0 et 1 for i to n1 do tau:=(i-1)*dt: xx[i]:=evalf(subs(t=tau,x1)): yy[i]:=evalf(subs(t=tau,y1)): #print(i,xx[i],yy[i]); od: Equation paramétrique du quart de cercle P1P2 de la rainure (t varie de 0 à 1) x2:=R2/2*cos(phi)+r*cos(t):#attention au sens de rotation du parcours de l'objet y2:=R2/2*sin(phi)+r*sin(t): n2:=6: dt:=Pi/2/(n2-1):#arc de Pi/2 for i to n2 do tau:=phi-Pi+(i-1)*dt: xx[i]:=evalf(subs(t=tau,x2)): yy[i]:=evalf(subs(t=tau,y2)): od: for i to n2 do Vector[row]([i,xx[i],yy[i]]) od: droite:=plot((tan(phi)*x-r/cos(phi),x=0..3),linestyle=dot,color=blue): sol[1]: xP3:=evalf(subs(op(1,sol[1]),x)):yP3:=evalf(subs(op(1,sol[1]),y)): xP2:=evalf(subs(op(1,sol[2]),x)):yP2:=evalf(subs(op(1,sol[2]),y)): xP4:=evalf(subs(op(1,sol1[1]),x)):yP4:=evalf(subs(op(1,sol1[1]),y)): xP5:=E-(R-a):yP5:=0: x3:=t*(xP3-xP2)+xP2: y3:=t*(yP3-yP2)+yP2: n3:=10: dt:=1/(n3-1):#t varie entre 0 et 1 for i to n3 do tau:=(i-1)*dt: xx[i+n2]:=evalf(subs(t=tau,x3)): yy[i+n2]:=evalf(subs(t=tau,y3)): od: for i to n3 do Vector[row]([i,xx[i],yy[i]]) od: x4:=xP5+R-a+(R-a)*cos(t):#attention au sens de rotation du parcours de l'objet y4:=(R-a)*sin(t): n4:=11: eta:=arcsin(yP4/(R-a)): dt:=(-eta)/(n2-1)/2:#arc de Pi/2 for i to n4 do tau:=(Pi+eta)+(i-1)*dt:#recherche de tau ? xx[i+n2+n3]:=evalf(subs(t=-tau,x4)): yy[i+n2+n3]:=evalf(subs(t=-tau,y4)): od: for i to n4 do Vector[row]([i,xx[i],yy[i]]) od: n:=n2+n3+n4; for i to n do Vector[row]([i,xx[i],yy[i]]) od: figure:=NULL: for i from 0 to n do xx[0]:=0:yy[0]:=0: figure:=figure,[xx[i],yy[i]]: od: figure:=[figure]: polygonplot(figure,scaling=constrained,color=yellow):#,view=[-0.1..5,-0.1..3] for i to n do X[i]:=xx[i]: Y[i]:=yy[i] od: d1:=plottools[disk]([xP1,yP1],0.05,color=blue):############ non définis d2:=plottools[disk]([xP2,yP2],0.05,color=red):############ non définis n := 27 ##### ci-dessus, il faut arrêter le trait à l'axe Ox ############### il suffit de prendre le symétrique puis 4 rotations de Pi/5 ############# symOX:= pt -> [pt[1],-pt[2]]: rot:=proc(t,pt) [pt[1]*cos(t)-pt[2]*sin(t),pt[1]*sin(t)+pt[2]*cos(t)]; end: figure1:=[ op(figure),op(map(symOX,figure))]: croix:=op(figure1): for i to 4 do croix:=croix,op(map( pt -> rot(i*2*Pi/5,pt),figure1) ): od: croix:=[croix]: polygonplot(croix,scaling=constrained,color=yellow); How arrange this drawning and animate it. Thank you.

First 26 27 28 29 30 31 32 Last Page 28 of 63