Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024


 

An attractor is called strange if it has a fractal structure, that is if it has a non-integer Hausdorff dimension. This is often the case when the dynamics on it are chaotic, but strange nonchaotic attractors also exist.  If a strange attractor is chaotic, exhibiting sensitive dependence on initial conditions, then any two arbitrarily close alternative initial points on the  attractor, after any of various numbers of iterations, will lead to  points that are arbitrarily far apart (subject to the confines of the attractor), and after any of various other numbers of iterations will  lead to points that are arbitrarily close together. Thus a dynamic system with a chaotic attractor is locally unstable yet globally stable: once some sequences have entered the attractor, nearby points diverge  from one another but never depart from the attractor.


The term strange attractor was coined by David Ruelle and Floris Takens to describe the attractor resulting from a series of bifurcations of a system describing fluid flow. Strange attractors are often differentiable in a few directions, but some are like a Cantor dust, and therefore not differentiable. Strange attractors may also be found  in the presence of noise, where they may be shown to support invariant  random probability measures of Sinai–Ruelle–Bowen type.


Examples of strange attractors include the  Rössler attractor, and Lorenz attractor.

 

 

THOMAS``with(plots); b := .20; sys := diff(x(t), t) = sin(y(t))-b*x(t), diff(y(t), t) = sin(z(t))-b*y(t), diff(z(t), t) = sin(x(t))-b*z(t); sol := dsolve({sys, x(0) = 1.1, y(0) = 1.1, z(0) = -0.1e-1}, {x(t), y(t), z(t)}, numeric); odeplot(sol, [x(t), y(t), z(t)], t = 0 .. 600, axes = boxed, numpoints = 50000, labels = [x, y, z], title = "Thomas Attractor")

 

 

 

Dabras``

with(plots); a := 3.00; b := 2.7; c := 1.7; d := 2.00; e := 9.00; sys := diff(x(t), t) = y(t)-a*x(t)+b*y(t)*z(t), diff(y(t), t) = c*y(t)-x(t)*z(t)+z(t), diff(z(t), t) = d*x(t)*y(t)-e*z(t); sol := dsolve({sys, x(0) = 1.1, y(0) = 2.1, z(0) = -2.00}, {x(t), y(t), z(t)}, numeric); odeplot(sol, [x(t), y(t), z(t)], t = 0 .. 100, axes = boxed, numpoints = 35000, labels = [x, y, z], title = "Dabras Attractor")

 

Halvorsen

NULLwith(plots); a := 1.89; sys := diff(x(t), t) = -a*x(t)-4*y(t)-4*z(t)-y(t)^2, diff(y(t), t) = -a*y(t)-4*z(t)-4*x(t)-z(t)^2, diff(z(t), t) = -a*z(t)-4*x(t)-4*y(t)-x(t)^2; sol := dsolve({sys, x(0) = -1.48, y(0) = -1.51, z(0) = 2.04}, {x(t), y(t), z(t)}, numeric, maxfun = 300000); odeplot(sol, [x(t), y(t), z(t)], t = 0 .. 600, axes = boxed, numpoints = 35000, labels = [x, y, z], title = "Halvorsen Attractor")

 

Chen

 

 

with(plots); alpha := 5.00; beta := -10.00; delta := -.38; sys := diff(x(t), t) = alpha*x(t)-y(t)*z(t), diff(y(t), t) = beta*y(t)+x(t)*z(t), diff(z(t), t) = delta*z(t)+(1/3)*x(t)*y(t); sol := dsolve({sys, x(0) = -7.00, y(0) = -5.00, z(0) = -10.00}, {x(t), y(t), z(t)}, numeric); odeplot(sol, [x(t), y(t), z(t)], t = 0 .. 100, axes = boxed, numpoints = 35000, labels = [x, y, z], title = "Chen Attractor")

 

References

1. 

https://www.dynamicmath.xyz/strange-attractors/

2. 

https://en.wikipedia.org/wiki/Attractor#Strange_attractor

``


 

Download Attractors.mw

Hi everyone...

How can I remove the warning (Warning, (in anonymous procedure created in Typesetting:-FI) `m` is implicitly declared local
) from this for command in Maple 2024? I know the warning can be ignored but I want to remove it anyway.

for k from 1 to 4 do
    A[k] := Matrix(k, k, (i, j) -> local m; ifelse(i + j < k + 2, add(Y[i - m + j - 1]*binomial(i - 1, m)*(-1)^m, m = 0 .. i - 1), 0));
end do

tnx...

I do not think I ever saw this warning messages from dsolve. This is _Clairaut first order ode. When adding the option singsol=all in the dsolve call, Maple replies with 

I do not have earlier version of Maple to try as my C: drive died and lost all my Maple's installed versions. I need to to try to install older version of Maple sometime and check.

Is this new warning and why does it show? Is this suppose to happen? 


 

restart;

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1782 and is the same as the version installed in this computer, created 2024, August 8, 16:5 hours Pacific Time.`

restart;

ode:=a*(1 + diff(y(x), x)^3)^(1/3) + x*diff(y(x), x) - y(x) = 0;

a*(1+(diff(y(x), x))^3)^(1/3)+x*(diff(y(x), x))-y(x) = 0

dsolve(ode,y(x),singsol=all)

Warning, only 1 systems are considered

Warning, only 1 systems are considered

y(x) = a*(c__1^3+1)^(1/3)+x*c__1

 


 

Download strange_warning_message_from_dsolve.mw

I also noticed these warning messages show up only the first time dsolve is called on this ode.

Calling it again right after, using the same command, the warning messages no longer show up, which is  even more strange.

 

I am plotting phase plot of two first order ode's.

I noticed when added +t to one ode, the plot generated losses all the slope fields. Any one knows why and if this is just limitation of DEplot or if there is a way to workaround it. 

THis worksheet has first example showing expected output, then second example where +t was added first ode. Now same code generates plot will all the slope field gone.


 

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

sys:=[diff(x(t),t)+diff(y(t),t) = x(t)+y(t), 2*diff(x(t),t)+diff(y(t),t) = 2*x(t)+3*y(t)];
DEtools:-DEplot(sys,[x(t), y(t)],
        t = 0 .. 200,x = -1000 .. 1000,y = -1000 .. 1000,
        [[x(0)=1, y(0)=2]],
        labels = [x(t), y(t)],
        linecolor =red,arrowsize = 1.5,axes = boxed,
        color = 'magnitude[legacy]')

[diff(x(t), t)+diff(y(t), t) = x(t)+y(t), 2*(diff(x(t), t))+diff(y(t), t) = 2*x(t)+3*y(t)]

#added +t to the RHS of one ode. Everything else the same.
sys_2:=[diff(x(t),t)+diff(y(t),t) = x(t)+y(t)+t, 2*diff(x(t),t)+diff(y(t),t) = 2*x(t)+3*y(t)];
DEtools:-DEplot(sys_2,[x(t), y(t)],
        t = 0 .. 200,x = -1000 .. 1000,y = -1000 .. 1000,
        [[x(0)=1, y(0)=2]],
        labels = [x(t), y(t)],
        linecolor =red,arrowsize = 1.5,axes = boxed,
        color = 'magnitude[legacy]')

[diff(x(t), t)+diff(y(t), t) = x(t)+y(t)+t, 2*(diff(x(t), t))+diff(y(t), t) = 2*x(t)+3*y(t)]

dsolve([op(sys),x(0)=1, y(0)=2]);

{x(t) = 3*exp(t)-2*exp(-t), y(t) = 2*exp(-t)}

dsolve([op(sys_2),x(0)=1, y(0)=2]);

{x(t) = 4*exp(t)-4*exp(-t)+1-3*t, y(t) = 4*exp(-t)-2+2*t}

 


 

Download strange_DEplot.mw

update

if someone is interested, I found Maple has builtin function to check if system of ode's is autonomous or not. So changed my code to check first. Here is how to check:


 

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

restart;

sys:=[diff(x(t),t)+diff(y(t),t) = x(t)+y(t), 2*diff(x(t),t)+diff(y(t),t) = 2*x(t)+3*y(t)];
if DEtools:-autonomous(sys,[x(t),y(t)],t) then
    DEtools:-DEplot(sys,[x(t), y(t)],
        t = 0 .. 200,x = -1000 .. 1000,y = -1000 .. 1000,
        [[x(0)=1, y(0)=2]],
        labels = [x(t), y(t)],
        linecolor =red,arrowsize = 1.5,axes = boxed,
        color = 'magnitude[legacy]');
else
  print("WARNING, non-autonomous system. Will not do phase plot");
fi;

[diff(x(t), t)+diff(y(t), t) = x(t)+y(t), 2*(diff(x(t), t))+diff(y(t), t) = 2*x(t)+3*y(t)]

#added +t to the RHS of one ode. Everything else the same.
sys_2:=[diff(x(t),t)+diff(y(t),t) = x(t)+y(t)+t, 2*diff(x(t),t)+diff(y(t),t) = 2*x(t)+3*y(t)];
if DEtools:-autonomous(sys_2,[x(t),y(t)],t) then
   DEtools:-DEplot(sys_2,[x(t), y(t)],
        t = 0 .. 200,x = -1000 .. 1000,y = -1000 .. 1000,
        [[x(0)=1, y(0)=2]],
        labels = [x(t), y(t)],
        linecolor =red,arrowsize = 1.5,axes = boxed,
        color = 'magnitude[legacy]');
else
  print("WARNING, non-autonomous system. Will not do phase plot");
fi;

[diff(x(t), t)+diff(y(t), t) = x(t)+y(t)+t, 2*(diff(x(t), t))+diff(y(t), t) = 2*x(t)+3*y(t)]

"WARNING, non-autonomous system. Will not do phase plot"

 


 

Download strange_DEplot_V2.mw

 

 

 

I found that  DynamicSystems package uses global variable called s

THis makes zero design sense. Why would a package use a global variable that could have been used by a user? 

What is the correct way to prevent this warning message from showing up, as I have no control over what variable can be used in global space.  I also tried to declare as local to the function that is using the package, but that did not help. Only way was to remove variable from global space before.

Any suggestions?  And why DynamicSystems is even using global symbols in first place?


 

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

restart;

z

foo:=proc()
 local sv;

 DynamicSystems:-SystemOptions('statevariable'=sv);

end proc;
 

proc () local sv; DynamicSystems:-SystemOptions('statevariable' = sv) end proc

s:="test";
foo();

"test"

Warning, the global variable(s) {s} used by DynamicSystems are assigned values.  They must be unassigned to load DynamicSystems.  DynamicSystems:-SystemOptions may be used to reassign the options that use these variable(s):
  complexfreqvar = s

x

restart;

foo:=proc()
 local sv;
 local s;

 DynamicSystems:-SystemOptions('statevariable'=sv);

end proc;

proc () local sv, s; DynamicSystems:-SystemOptions('statevariable' = sv) end proc

s:="test";
foo();

"test"

Warning, the global variable(s) {s} used by DynamicSystems are assigned values.  They must be unassigned to load DynamicSystems.  DynamicSystems:-SystemOptions may be used to reassign the options that use these variable(s):
  complexfreqvar = s

x

restart;

#warnign goes away when there is no global used  s before the call is made
foo:=proc()
 local sv;
 local s;

 DynamicSystems:-SystemOptions('statevariable'=sv);

end proc;

proc () local sv, s; DynamicSystems:-SystemOptions('statevariable' = sv) end proc

foo();

x

 


 

Download dynamic_systems_uses_gloabl_s.mw

 

For display of plot axes labels, I prefer to use the Typesseting in place so that diff(y(x),x) display as y'(x) (takes less space and looks better also).

It does that in the worksheet. But when using diff(y(x),x) as the Y axis label, the plot still shows diff(y(x),x) and not y'(x).

Is there a way to make plot and DEtools:-DEplot  use the Typesetting in place?   What is the point of using Typesetting if plots generated do not use it?
 

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1781 and is the same as the version installed in this computer, created 2024, August 4, 11:27 hours Pacific Time.`

restart;

interface(typesetting = extended)

extended

Typesetting:-Settings(prime=x,'typesetprime'=true); #this says to use y'(x) instead of dy/dx    
#Typesetting:-Suppress(y(x)); # this says to use y' and not y'(x)

x, false

#phase plot for second order ode. Y axis is y'(x) and X axis is y(x)
#uses DynamicsSystems for conversion.
ode := diff(y(x),x$2) = -y(x)-1/2*diff(y(x),x);   
DynamicSystems:-SystemOptions('statevariable'=sv):
DynamicSystems:-SystemOptions('discretefreqvar'=ssv):            
DynamicSystems:-SystemOptions('outputvariable'=sssv):
DynamicSystems:-SystemOptions('continuoustimevar'=ssssv):  

DynamicSystems:-SystemOptions('continuoustimevar'=x):            
sys:=DynamicSystems:-DiffEquation(ode,'outputvariable'=[y(x)]):

sys0:=DynamicSystems:-StateSpace(sys):
eq1:=diff(X1(x),x)=sys0:-a[1,..].Vector([X1(x),X2(x)]):
eq2:=diff(X2(x),x)=sys0:-a[2,..].Vector([X1(x),X2(x)]):

DEtools:-DEplot([eq1,eq2],[X1(x),X2(x)],x=0..100,
            X2=-4..4,X1=-4..4,
            axes=boxed,
            linecolor = red,        
            labels=[y(x),diff(y(x),x)]);
 

diff(diff(y(x), x), x) = -y(x)-(1/2)*(diff(y(x), x))

 


 

Download labels_for_plot_do_not_use_typesetting_maple_2024.mw

 

Notice the label on Y axis above. I'd like that to display as y'(x) as it is in the worksheet.

 

I noticed very serious problem in Maple 2024.1

This is new windows 10  22H2  installation. With Maple 2024.1. I've only seen this using Maple and no other windows applications. I have 2 monitors and NVIDIA GeForce RTX 3060 graphics card.

What happens is that sometimes (may be 2-3 times each day), Maple frontend gets all mangled up. I could not figure what causes it. it could be when I move the window from one terminal to the other. sometimes it happens when I open a debugger window.

Only way to fix this is to close all of Maple and start it again. 

Just wondering if anyone seen anything like this and what can cause it. Again, it is only Maple that shows this problem, no other windows application does this. Have 128 GB Ram and PC is only 2 years old.

This is the very first time I see this in Maple and used Maple for long time and on this same PC before and had two terminals also before all the time. I have no idea what causes it.

Could it be Java problem in Maple 2024.1 ?

Any idea why calling solve(eqs,unknowns) gives Error, (in is/internal) type does not exist when the unknowns are in a set, but the error goes away when the unknowns are in a list? Is this expected or is this a bug?


 

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1779 and is the same as the version installed in this computer, created 2024, July 25, 8:56 hours Pacific Time.`

restart;

eqs:={0 = ln(2)+ln(-a*sech(1/2*2^(1/2)*b)^2), 1 = -tanh(1/2*2^(1/2)*b)*a^(1/2)*2^(1/2)};
unknown:={a, b};

{0 = ln(2)+ln(-a*sech((1/2)*2^(1/2)*b)^2), 1 = -tanh((1/2)*2^(1/2)*b)*a^(1/2)*2^(1/2)}

{a, b}

solve(eqs,unknown)

Error, (in is/internal) type `a` does not exist

solve(eqs,unknown)

Error, (in is/internal) type `a` does not exist

restart;

eqs:=[0 = ln(2)+ln(-a*sech(1/2*2^(1/2)*b)^2), 1 = -tanh(1/2*2^(1/2)*b)*a^(1/2)*2^(1/2)];
unknown:={a, b};

[0 = ln(2)+ln(-a*sech((1/2)*2^(1/2)*b)^2), 1 = -tanh((1/2)*2^(1/2)*b)*a^(1/2)*2^(1/2)]

{a, b}

solve(eqs,unknown)

Error, (in is/internal) type `a` does not exist

restart;

eqs:=[0 = ln(2)+ln(-a*sech(1/2*2^(1/2)*b)^2), 1 = -tanh(1/2*2^(1/2)*b)*a^(1/2)*2^(1/2)];
unknown:=[a, b];

[0 = ln(2)+ln(-a*sech((1/2)*2^(1/2)*b)^2), 1 = -tanh((1/2)*2^(1/2)*b)*a^(1/2)*2^(1/2)]

[a, b]

solve(eqs,unknown)

[]

 


 

Download is_internal_error_from_solve_maple_2024_1.mw

Update

Reported to Maplesoft support.

 

Any idea why limit(e,x=0) fail to evaluate but  eval(e,x=0) does in this example? 

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1779 and is the same as the version installed in this computer, created 2024, July 25, 8:56 hours Pacific Time.`

restart;

e:=-tanh(sqrt(2)*(a*x+b))

-tanh(2^(1/2)*(a*x+b))

limit(e,x=0)

limit(-tanh(2^(1/2)*(a*x+b)), x = 0)

eval(e,x=0)

-tanh(b*2^(1/2))

 

 

Download limit_problem_maple_2024_1.mw

I tried the above using some other software, and there both evaluate to same result as expected:

In Maple, I found that by removing the sqrt(2) from inside the tanh, then limit now works

e:=-tanh((a*x+b));
limit(e,x=0)

Is this a bug?


 

This project discusses predator-prey system, particularly the Lotka-Volterra equations,which model the interaction between two sprecies: prey and predators. Let's solve the Lotka-Volterra equations numerically and visualize the results.

NULL

NULL

alpha := 1.0; beta := .1; g := 1.5; delta := 0.75e-1; ode1 := diff(x(t), t) = alpha*x(t)-beta*x(t)*y(t); ode2 := diff(y(t), t) = delta*x(t)*y(t)-g*y(t); eq1 := -beta*x*y+alpha*x = 0; eq2 := delta*x*y-g*y = 0; equilibria := solve({eq1, eq2}, {x, y}); print("Equilibrium Points: ", equilibria); initial_conditions := x(0) = 40, y(0) = 9; sol := dsolve({ode1, ode2, initial_conditions}, {x(t), y(t)}, numeric); eq_points := [seq([rhs(eq[1]), rhs(eq[2])], `in`(eq, equilibria))]

[[0., 0.], [20., 10.]]

plots[odeplot](sol, [[t, x(t)], [t, y(t)]], t = 0 .. 100, legend = ["Rabbits", "Wolves"], title = "Prey-Predator Dynamics", labels = ["Time", "Population"])

NULL

NULL

NULL

sol_plot := plots:-odeplot(sol, [[x(t), y(t)]], 0 .. 100, color = "blue"); equilibrium_plot := plots:-pointplot(eq_points, color = "red", symbol = solidcircle, symbolsize = 15); plots:-display([sol_plot, equilibrium_plot], title = "Phase Portrait with Equilibrium Points", labels = ["Rabbits", "Wolves"])

Now, we need to handle a modified version of the Lotka-Volterra equations. These modified equations incorporate logistic growth fot the prey population.

 

 

restart

alpha := 1.0; beta := .1; g := 1.5; delta := 0.75e-1; k := 100; ode1 := diff(x(t), t) = alpha*x(t)*(1-x(t)/k)-beta*x(t)*y(t); ode2 := diff(y(t), t) = delta*x(t)*y(t)-g*y(t); eq1 := alpha*x*(1-x/k)-beta*x*y = 0; eq2 := delta*x*y-g*y = 0; equilibria := solve({eq1, eq2}, {x, y}); print("Equilibrium Points: ", equilibria); initial_conditions := x(0) = 40, y(0) = 9; sol := dsolve({ode1, ode2, initial_conditions}, {x(t), y(t)}, numeric); eq_points := [seq([rhs(eq[1]), rhs(eq[2])], `in`(eq, equilibria))]

[[0., 0.], [100., 0.], [20., 8.]]

plots[odeplot](sol, [[t, x(t)], [t, y(t)]], t = 0 .. 100, legend = ["Rabbits", "Wolves"], title = "Prey-Predator Dynamics", labels = ["Time", "Population"])

NULL

plots:-odeplot(sol, [[x(t), y(t)]], 0 .. 50, color = "blue"); equilibrium_plot := plots:-pointplot(eq_points, color = "red", symbol = solidcircle, symbolsize = 15); plots:-display([plots:-odeplot(sol, [[x(t), y(t)]], 0 .. 50, color = "blue"), equilibrium_plot], title = "Phase Portrait with Equilibrium Points", labels = ["Rabbits", "Wolves"])

NULL


 

Download predator_prey2.mw

I do not have earlier Maple version to check now. But Maple 2024.1 gives division by zero on this second order ode with missing x. This looks like new problem in Maple. Would someone who have access to earlier version of Maple be able to check if this problem shows there also? I solved this and get y=x+3 as solution which Maple verifies.

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

restart;

ode:=diff(y(x),x$2)=(diff(y(x),x))^3-(diff(y(x),x))^2;
IC:=y(0)=3,D(y)(0)=1;

diff(diff(y(x), x), x) = (diff(y(x), x))^3-(diff(y(x), x))^2

y(0) = 3, (D(y))(0) = 1

dsolve([ode,IC])

Error, (in dsolve) numeric exception: division by zero

sol:=y(x)=3+x;
odetest(sol,[ode,IC])

y(x) = 3+x

[0, 0, 0]

DEtools:-odeadvisor(ode);

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

infolevel[dsolve]:=5;

5

dsolve([ode,IC])

Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order

--- trying a change of variables {x -> y(x), y(x) -> x}

differential order: 2; trying a linearization to 3rd order

trying 2nd order ODE linearizable_by_differentiation

trying 2nd order, 2 integrating factors of the form mu(x,y)

trying differential order: 2; missing variables

-> Computing canonical coordinates for the symmetry [0, 1]

-> Rewriting ODE in canonical coordinates by means of differential invariants

Try computing 1 more symmetries for ODE written in canonical coordinates

 -> Computing symmetries using: way = 3

 Found another symmetry:

[1, 0]

 Found another symmetry:

[-x+y, 0]

Computing a convenient ordering to use the 3 symmetries available

<- differential order: 2; canonical coordinates successful

<- differential order 2; missing variables successful

Error, (in dsolve) numeric exception: division by zero

dsolve(ode)

Methods for second order ODEs:

--- Trying classification methods ---

trying 2nd order Liouville

trying 2nd order WeierstrassP

trying 2nd order JacobiSN

differential order: 2; trying a linearization to 3rd order

--- trying a change of variables {x -> y(x), y(x) -> x}

differential order: 2; trying a linearization to 3rd order

trying 2nd order ODE linearizable_by_differentiation

trying 2nd order, 2 integrating factors of the form mu(x,y)

trying differential order: 2; missing variables

-> Computing canonical coordinates for the symmetry [0, 1]

-> Rewriting ODE in canonical coordinates by means of differential invariants

Try computing 1 more symmetries for ODE written in canonical coordinates

 -> Computing symmetries using: way = 3

 Found another symmetry:

[1, 0]

 Found another symmetry:

[-x+y, 0]

Computing a convenient ordering to use the 3 symmetries available

-> Calling odsolve with the ODE diff(_b(_a) _a) = _b(_a)^3-_b(_a)^2 _b(_a) HINT = [[1 0] [-_a+y -_b*(_b-1)]]

   *** Sublevel 2 ***

   symmetry methods on request

 1st order, trying reduction of order with given symmetries:

[1, 0], [-_a+y, -_b*(_b-1)]

   1st order, trying the canonical coordinates of the invariance group

   <- 1st order, canonical coordinates successful

<- differential order: 2; canonical coordinates successful

<- differential order 2; missing variables successful

y(x) = ln(LambertW(-c__1*exp(x-1)))+c__2

 

 

Download divide_by_zero_maple_2024_1_august_5_2024.mw

Something seems to have changed.  I do not now have Maple 2024.0 to check or earlier Maple's as I have to reinstall windows since my C:\ drive died. 

I installed Maple 2024.1 new on windows 10 home edition.

I noticed now when evaluating the current cell, the cursor automatically jumps to next cell, which is what I want and how Maple always worked.

But now the cursor jumps to the end of the command in the next cell. Before, I could swear that not how it worked and it used to jump to the start of the next cell.

This makes it very confusing, as I keep looking for where the cursor is now.

Why was this changed in 2024.1? I looked at option and see nothing to change this. 

Here is worksheet and small movie. 

This is my display options

 


 

interface(version);

`Standard Worksheet Interface, Maple 2024.1, Windows 10, June 25 2024 Build ID 1835466`

x:=1;

1

y:=3;

3

z:=4;

4

h:=4;

4

 


 

Download cursor_jump_to_end_of_line.mw

 

 

Update

I tried to change the cursor size and thickness in windows 10 itself (using settings->Ease of access->Text cursor) and made it much bigger and restarted Maple but this had no effect. Cursor inside Maple remained the same.

I was hoping if there is a way to make the cursor bigger then this will make it easier to see where it jumped to when hitting enter.

It is bad, since the Maple cursor jumps to random places in the next cell. sometimes it jumps to the middle of the code in the next cell when there are more than one line there.

Here is a movie. Notice how it jumped to the start of the second line now in next cell in one case and not to the end of the code.

I can't believe no one at Maplesoft have noticed this and is able to fix it. This is ridiculous behavior. I spend few seconds each time I hit enter looking for where the cursor has landed as I keep looking at start of the next cell and it is not there. I could have 10-20 lines of code in one cell and have too look to find where the cursor is hidden in these 20 lines.

It natural for one to look for where the cursor is when woking and this makes it annoying. Hopefully someone can find a way to tell Maple to bring the old behaviour back where cursor jumps always to the start of the next cell.

 

 

 

 

I switched to using smart plot in Maple since it makes it easier. Here is an example

sol:=[-1/4*x^2, x];
plot(sol,legend=sol)

But sometimes it gives internal error, like in this example, because some of the list of solutions give complex over some x domain

sol:=[-1/4*x^2, (-1/2-1/2*(-3)^(1/2))^2+(-1/2-1/2*(-3)^(1/2))*x, (-1/2+1/2*(-3)^(1/2))^2+(-1/2+1/2*(-3)^(1/2))*x];
plot(sol,legend=sol)

Luckily I can trap this error and workaround it. 

The strange thing is that if I give it explicit x range, then it works. It now can remove the solutions which give complex values automatically

p:=plot(sol,x=-4..4,legend=sol);

 

question is: Should not smart plot have done this automatically? That is why it is called smart plot.

i.e. remove those solutions that give complex values like the case the above? 

Maple 2024.1 on windows 10

 

I am using the smart plot (i.e plot without giving the x=from..to) since I am generating these plots programmatically and better let Maple figure the best range to use.

But found Maple hangs on some solutions.

Here is an example

restart;
sol:=1/2/cos(x)*(sin(x)^2+(sin(x)^4+36*cos(x))^(1/2));
plot(sol);

I waited for 30 minutes and nothing happened.

If I change the above command to 

plot(sol,x=-Pi..Pi);

then it finishes instantly. It looks like Maple is stuck trying to find correct x and y ranges to use.

Is this known limitation  or smart plot or is this a bug?

Maple 2024.1 on windows 10.

 

What exactly is the difference between the differential operator d_[] from the physics package and diff() ? Why is it not possible for me to differentiate a scalar function g or a coordinate r with the help of the operator? d_[1] should correspond to d/dx (X = (x, y, z, t)) or not? 

restart

with(Physics)

with(Vectors)NULL

Setup(coordinates = cartesian)

[coordinatesystems = {X}]

(1)

r = sqrt(x^2+y^2+z^2)

r = (x^2+y^2+z^2)^(1/2)

(2)

d_[1](g(r))

0

(3)

diff(g(r), x)

(D(g))((x^2+y^2+z^2)^(1/2))*x/(x^2+y^2+z^2)^(1/2)

(4)

d_[1](r)

0

(5)

diff(r, x)

x/(x^2+y^2+z^2)^(1/2)

(6)

d_[1](x)

1

(7)

diff(x, x)

1

(8)

NULL

Download example_d_[].mw

First 28 29 30 31 32 33 34 Last Page 30 of 43