Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

Why doesn't this ODE return zero when using odetest? Did I do something wrong?

Would you like help checking the equation or debugging the issue?

restart

with(PDEtools)

declare(P(mu))

P(mu)*`will now be displayed as`*P

(1)

assume(A::real, r::real, rho::real, lambda::real)

Psol := P(mu) = 2*A*lambda/((A^2+r)*exp(lambda*rho*mu)+r*exp(-lambda*rho*mu))

P(mu) = 2*A*lambda/((A^2+r)*exp(lambda*rho*mu)+r*exp(-lambda*rho*mu))

(2)

ode := (diff(P(mu), mu))^2-rho^2*P(mu)^2*(1+r*P(mu)^2) = 0

(diff(P(mu), mu))^2-rho^2*P(mu)^2*(1+r*P(mu)^2) = 0

(3)

res := odetest(Psol, ode)

4*A^6*rho^2*lambda^4*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4+8*r*A^4*rho^2*lambda^4*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-24*A^4*lambda^4*rho^2*exp(4*lambda*rho*mu)*r/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-4*A^6*rho^2*lambda^2*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4+4*A^2*r^2*rho^2*lambda^4*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-8*A^2*lambda^4*rho^2*exp(4*lambda*rho*mu)*r^2/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4+4*A^2*r^2*rho^2*lambda^4*exp(2*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-8*r*A^4*rho^2*lambda^2*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-8*A^4*lambda^2*rho^2*exp(4*lambda*rho*mu)*r/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-4*A^2*r^2*rho^2*lambda^2*exp(6*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-8*A^2*lambda^2*rho^2*exp(4*lambda*rho*mu)*r^2/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4-4*A^2*r^2*rho^2*lambda^2*exp(2*lambda*rho*mu)/(A^2*exp(2*lambda*rho*mu)+exp(2*lambda*rho*mu)*r+r)^4

(4)

simplify(res)

4*lambda^2*exp(2*lambda*rho*mu)*(((-2*lambda^2-2)*r^2+(-6*lambda^2-2)*A^2*r)*exp(2*lambda*rho*mu)+(lambda+1)*((A^2+r)^2*exp(4*lambda*rho*mu)+r^2)*(lambda-1))*A^2*rho^2/((A^2+r)*exp(2*lambda*rho*mu)+r)^4

(5)

P_hyper := P(mu) = 2*A*lambda/((A^2+r)*cosh(rho*mu)+(A^2-r)*sinh(rho*mu))

P(mu) = 2*A*lambda/((A^2+r)*cosh(rho*mu)+(A^2-r)*sinh(rho*mu))

(6)

res_hyper := simplify(odetest(P_hyper, ode), symbolic)

-16*A^4*lambda^2*rho^2*r*(lambda^2+1)/((A^2+r)*cosh(rho*mu)+(A^2-r)*sinh(rho*mu))^4

(7)
 

NULL

Download ode.mw

I’m trying to test a specific function as a solution to a nonlinear ODE in Maple. The equation is of the Riccati type, and my candidate solution involves parameters A, B, and C.

I've used assuming to specify the condition (4AC−B2)>0 and (4AC - B^2) <0, but when I use odetest to verify the solution, I still get a nonzero result. Additionally, when I apply the assumption, Maple sometimes introduces a negation sign in the output (e.g., changing sqrt(...) into -sqrt(...)), which wasn't part of the original solution.

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

E := diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2

diff(G(xi), xi) = A+B*G(xi)+C*G(xi)^2

(2)

S1 := G(xi) = (sqrt(4*A*C-B^2)*tan((1/2)*sqrt(4*A*C-B^2)*(d[0]+xi))-B)/(2*C)

G(xi) = (1/2)*((4*A*C-B^2)^(1/2)*tan((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))-B)/C

(3)

odetest(S1, E)

0

(4)

S2 := G(xi) = -(sqrt(4*A*C-B^2)*cot((1/2)*sqrt(4*A*C-B^2)*(d[0]+xi))+B)/(2*C)

G(xi) = -(1/2)*((4*A*C-B^2)^(1/2)*cot((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))+B)/C

(5)

odetest(S2, E)

0

(6)

assume(4*A*C-B^2 < 0)

S3 := G(xi) = -(sqrt(4*A*C-B^2)*tanh((1/2)*sqrt(4*A*C-B^2)*(d[0]+xi))+B)/(2*C)

G(xi) = -(1/2)*((4*A*C-B^2)^(1/2)*tanh((1/2)*(4*A*C-B^2)^(1/2)*(d[0]+xi))+B)/C

(7)

odetest(S3, E)

-2*A+(1/2)*B^2/C

(8)

Download A2.mw

i did every thing coreectly but nothing happen not apply where is my mistake?

``

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

NULL

S := (diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(2)

SS := diff(G(xi), xi) = sqrt(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))

diff(G(xi), xi) = (r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(3)

Se := sqrt(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2)) = diff(G(xi), xi)

(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2) = diff(G(xi), xi)

(4)

dub := diff(SS, xi)

diff(diff(G(xi), xi), xi) = (1/2)*(2*r^2*G(xi)*(a+b*G(xi)+l*G(xi)^2)*(diff(G(xi), xi))+r^2*G(xi)^2*(b*(diff(G(xi), xi))+2*l*G(xi)*(diff(G(xi), xi))))/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(5)

Dubl2 := simplify(diff(diff(G(xi), xi), xi) = (1/2)*(2*r^2*G(xi)*(a+b*G(xi)+l*G(xi)^2)*(diff(G(xi), xi))+r^2*G(xi)^2*(b*(diff(G(xi), xi))+2*l*G(xi)*(diff(G(xi), xi))))/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2))

diff(diff(G(xi), xi), xi) = (1/2)*r^2*G(xi)*(diff(G(xi), xi))*(4*l*G(xi)^2+3*b*G(xi)+2*a)/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(6)

subs(SA, Dubl2)

diff((r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2), xi) = (1/2)*r^2*G(xi)*(4*l*G(xi)^2+3*b*G(xi)+2*a)

(7)

subs(Se, Dubl2)

diff(diff(G(xi), xi), xi) = (1/2)*r^2*G(xi)*(diff(G(xi), xi))*(4*l*G(xi)^2+3*b*G(xi)+2*a)/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(8)

subs(lhs(Se) = rhs(Se), Dubl2)

diff(diff(G(xi), xi), xi) = (1/2)*r^2*G(xi)*(diff(G(xi), xi))*(4*l*G(xi)^2+3*b*G(xi)+2*a)/(r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2))^(1/2)

(9)
 

NULL

Download subs.mw

I tried solving this ODE, but my result is very different from the expected one. How can I correctly obtain the solution? Also, is there a way to include both the positive and negative signs (±) in the equation so that the final result reflects both possibilities?

restart

with(PDEtools)

with(LinearAlgebra)

with(Physics)

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

declare(Omega(x, t)); declare(U(xi)); declare(u(x, y, z, t)); declare(Q(xi)); declare(V(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

 

u(x, y, z, t)*`will now be displayed as`*u

 

Q(xi)*`will now be displayed as`*Q

 

V(xi)*`will now be displayed as`*V

(2)

``

ode := f*g^3*(diff(diff(U(xi), xi), xi))-4*f*p*U(xi)-6*k*l*U(xi)-f^3*g*(diff(diff(U(xi), xi), xi))+6*f*g*U(xi)^2 = 0

f*g^3*(diff(diff(U(xi), xi), xi))-4*f*p*U(xi)-6*k*l*U(xi)-f^3*g*(diff(diff(U(xi), xi), xi))+6*f*g*U(xi)^2 = 0

(3)

S := (diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(diff(G(xi), xi))^2-r^2*G(xi)^2*(a+b*G(xi)+l*G(xi)^2) = 0

(4)

S1 := dsolve(S, G(xi))

G(xi) = (1/2)*(-b+(-4*a*l+b^2)^(1/2))/l, G(xi) = -(1/2)*(b+(-4*a*l+b^2)^(1/2))/l, G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2)), G(xi) = -4*a*exp(xi*r*a^(1/2))/(exp(c__1*r*a^(1/2))*(4*a*l-b^2+2*b*exp(xi*r*a^(1/2))/exp(c__1*r*a^(1/2))-(exp(xi*r*a^(1/2)))^2/(exp(c__1*r*a^(1/2)))^2))

(5)

S2 := S1[3]

G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2))

(6)

normal(G(xi) = -4*a*exp(c__1*r*a^(1/2))/(exp(xi*r*a^(1/2))*(4*a*l-b^2+2*b*exp(c__1*r*a^(1/2))/exp(xi*r*a^(1/2))-(exp(c__1*r*a^(1/2)))^2/(exp(xi*r*a^(1/2)))^2)), ':-expanded')

G(xi) = 4*a*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))/(-4*a*l*(exp(xi*r*a^(1/2)))^2+b^2*(exp(xi*r*a^(1/2)))^2-2*b*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))+(exp(c__1*r*a^(1/2)))^2)

(7)

simplify(G(xi) = 4*a*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))/(-4*a*l*(exp(xi*r*a^(1/2)))^2+b^2*(exp(xi*r*a^(1/2)))^2-2*b*exp(c__1*r*a^(1/2))*exp(xi*r*a^(1/2))+(exp(c__1*r*a^(1/2)))^2))

G(xi) = -4*a*exp(a^(1/2)*r*(c__1+xi))/(4*a*l*exp(2*xi*r*a^(1/2))-b^2*exp(2*xi*r*a^(1/2))+2*b*exp(a^(1/2)*r*(c__1+xi))-exp(2*c__1*r*a^(1/2)))

(8)

convert(%, trig)

G(xi) = -4*a*(cosh(a^(1/2)*r*(c__1+xi))+sinh(a^(1/2)*r*(c__1+xi)))/(4*a*l*(cosh(2*xi*r*a^(1/2))+sinh(2*xi*r*a^(1/2)))-b^2*(cosh(2*xi*r*a^(1/2))+sinh(2*xi*r*a^(1/2)))+2*b*(cosh(a^(1/2)*r*(c__1+xi))+sinh(a^(1/2)*r*(c__1+xi)))-cosh(2*c__1*r*a^(1/2))-sinh(2*c__1*r*a^(1/2)))

(9)

convert(S1[3], trig)

G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/((cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))*(4*a*l-b^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))^2))

(10)

simplify(G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/((cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))*(4*a*l-b^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2/(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))^2)))

G(xi) = -4*a*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))*(cosh(xi*r*a^(1/2))+sinh(xi*r*a^(1/2)))/((4*a*l-b^2)*cosh(xi*r*a^(1/2))^2+((8*a*l-2*b^2)*sinh(xi*r*a^(1/2))+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2))))*cosh(xi*r*a^(1/2))+(4*a*l-b^2)*sinh(xi*r*a^(1/2))^2+2*b*(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))*sinh(xi*r*a^(1/2))-(cosh(c__1*r*a^(1/2))+sinh(c__1*r*a^(1/2)))^2)

(11)
   

Download tt.mw

In this work, I do not intend to expand all the variables across the monomials. Instead, I want to restrict the distribution to only the variables x,y,z,tx, y, z, tx,y,z,t, possibly raising them to appropriate powers as needed, until I obtain the desired solution and satisfy the conditions of my PDE tests. However, I am uncertain whether "monomial" is the correct term to use here.

S1.mw

trail-1.mw

I have a list of candidate solutions. Some of them satisfy my PDE test (i.e., they make the PDE equal to zero), while others do not. How can I separate the solutions that satisfy the PDE from those that do not?

Trail-pdetest.mw

How to modify the ND procedure to handle derivatives with respect to more than three independent variables for higher-dimensional PDEs, it is work for [x,t] i want  it work for [x,y,z,t] , 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

alias(F=F(x, t), G=G(x, t))

F, G

(2)

with(PDEtools):
undeclare(prime):

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(3)

ND := proc(F, G, U)
  local v, w, f, g, a:
  v := op(F):
  if v[1] in U then w := -v[1] else w := v[1] end if:
  if v[2] in U then w := w, -v[2] else w := w, v[2] end if:
  f := op(0, F):
  g := op(0, G):
  a := diff(f(w)*g(v), U);
  convert(subs([w]=~[v], a), diff)
end proc:

ND(F, G, [x]);
ND(F, G, [t]);

-(diff(F, x))*G+F*(diff(G, x))

 

-(diff(F, t))*G+F*(diff(G, t))

(4)

ND(F, F, [x]);
ND(F, F, [x, x]);

0

 

2*F*(diff(diff(F, x), x))-2*(diff(F, x))^2

(5)

ND(F, G, [x$3]);

-(diff(diff(diff(F, x), x), x))*G+3*(diff(diff(F, x), x))*(diff(G, x))-3*(diff(F, x))*(diff(diff(G, x), x))+F*(diff(diff(diff(G, x), x), x))

(6)

ND(F, F, [x$3, t]);

2*F*(diff(diff(diff(diff(F, t), x), x), x))-2*(diff(diff(diff(F, x), x), x))*(diff(F, t))-6*(diff(diff(diff(F, t), x), x))*(diff(F, x))+6*(diff(diff(F, x), x))*(diff(diff(F, t), x))

(7)

NULL

NULL

#if i collect P1+P1+...+P7 it must get equation 26 in paper so i want define the up proc to open but is not for (3+1) dimesnion,

P1 := 9*ND(F, F, [x, t])

18*F*(diff(diff(F, t), x))-18*(diff(F, x))*(diff(F, t))

(8)

NULL

P2 := -5*ND(F, F, [`$`(x, 3), y])

0

(9)

P3 := ND(F, F, [`$`(x, 6)])

2*F*(diff(diff(diff(diff(diff(diff(F, x), x), x), x), x), x))-12*(diff(diff(diff(diff(diff(F, x), x), x), x), x))*(diff(F, x))+30*(diff(diff(diff(diff(F, x), x), x), x))*(diff(diff(F, x), x))-20*(diff(diff(diff(F, x), x), x))^2

(10)

P4 := -5*ND(F, F, [`$`(y, 2)])

0

(11)

P5 := alpha*ND(F, F, [`$`(x, 2)])

alpha*(2*F*(diff(diff(F, x), x))-2*(diff(F, x))^2)

(12)

P6 := beta*ND(F, F, [x, y])

0

(13)

P7 := gamma*ND(F, F, [x, z])

0

(14)

Download define.mw

I try to construct a system of coefficient but  i don't know why distribute of them is not working, beside this there is any other way for build this kind of systems 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := 9*(diff(u(x, y, z, t), t, x))+diff(u(x, y, z, t), `$`(x, 6))-5*(diff(u(x, y, z, t), `$`(x, 3), y)+diff(u(x, y, z, t), `$`(y, 2)))+15*((diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), `$`(x, 3)))+(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), `$`(x, 4)))-(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, y))-(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), y)))+45*(diff(u(x, y, z, t), x))^2*(diff(u(x, y, z, t), `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

(4)

``

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

 

15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))

(5)

H := u(x, y, z, t) = 2*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = 2*(diff(f(x, y, z, t), x))/f(x, y, z, t)

(6)

H1 := int(pde_linear, x)

(diff(u(x, y, z, t), z))*delta+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))-5*(int(diff(diff(u(x, y, z, t), y), y), x))+9*(diff(u(x, y, z, t), t))+diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x)-5*(diff(diff(diff(u(x, y, z, t), x), x), y))

(7)

L := eval(H1, H) = 0

-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t) = 0

(8)

numer(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0)) = numer(rhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))*denom(lhs(240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^4+beta*(2*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2)-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2/f(x, y, z, t)^2+60*(diff(diff(f(x, y, z, t), x), x))^3/f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^6/f(x, y, z, t)^6-10*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)+10*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2+18*(diff(diff(f(x, y, z, t), t), x))/f(x, y, z, t)+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))/f(x, y, z, t)+(2*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2)*delta+alpha*(2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2) = 0))

2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3+2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(9)

simplify(2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y))*beta+720*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+60*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-60*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2-18*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-30*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+10*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4+2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*alpha-240*(diff(f(x, y, z, t), x))^6-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), y))*beta-2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4*(diff(f(x, y, z, t), z))*delta+240*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-60*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3 = 0)

2*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-12*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-20*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+10*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-540*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+2*(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+2*(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+18*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+2*(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-10*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-240*(diff(f(x, y, z, t), x))^6+60*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-2*(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-2*f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+10*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(10)

F1 := %*(1/2)

(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*f(x, y, z, t)^5-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+15*(2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3-f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), x)))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*f(x, y, z, t)^5-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*f(x, y, z, t)^4+5*(-24*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2+24*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3*(diff(diff(f(x, y, z, t), x), x))+(diff(f(x, y, z, t), y))*f(x, y, z, t)^4)*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4+30*(diff(diff(f(x, y, z, t), x), x))^3*f(x, y, z, t)^3-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^2+(alpha*f(x, y, z, t)^5+360*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-30*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3*(diff(f(x, y, z, t), x))+15*f(x, y, z, t)^4*(diff(diff(f(x, y, z, t), x), y)))*(diff(diff(f(x, y, z, t), x), x))+(beta*f(x, y, z, t)^5-30*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^3)*(diff(diff(f(x, y, z, t), x), y))+9*(diff(diff(f(x, y, z, t), t), x))*f(x, y, z, t)^5+(diff(diff(f(x, y, z, t), x), z))*delta*f(x, y, z, t)^5-5*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5-120*(diff(f(x, y, z, t), x))^6+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2-(diff(f(x, y, z, t), x))^2*alpha*f(x, y, z, t)^4-f(x, y, z, t)^4*(beta*(diff(f(x, y, z, t), y))+(diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4 = 0

(11)

collect(F1, {alpha, beta, f(x, y, z, t)})

(-f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x)))*alpha+(-(diff(f(x, y, z, t), y))*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))+f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), y)))*beta+((diff(diff(f(x, y, z, t), x), z))*delta+diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))+9*(diff(diff(f(x, y, z, t), t), x))-5*(diff(diff(f(x, y, z, t), y), y)))*f(x, y, z, t)^5+(-6*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))-15*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-10*(diff(diff(diff(f(x, y, z, t), x), x), x))^2+5*(diff(f(x, y, z, t), y))*(diff(diff(diff(f(x, y, z, t), x), x), x))+15*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))+15*(diff(diff(f(x, y, z, t), x), y))*(diff(diff(f(x, y, z, t), x), x))-((diff(f(x, y, z, t), z))*delta+9*(diff(f(x, y, z, t), t)))*(diff(f(x, y, z, t), x))+5*(diff(f(x, y, z, t), y))^2)*f(x, y, z, t)^4+(30*(diff(f(x, y, z, t), x))^2*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))-30*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), y))+120*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))-30*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*(diff(diff(f(x, y, z, t), x), x))+30*(diff(diff(f(x, y, z, t), x), x))^3)*f(x, y, z, t)^3+(-120*(diff(f(x, y, z, t), x))^3*(diff(diff(diff(f(x, y, z, t), x), x), x))+30*(diff(f(x, y, z, t), x))^3*(diff(f(x, y, z, t), y))-270*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^2)*f(x, y, z, t)^2+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)-120*(diff(f(x, y, z, t), x))^6 = 0

(12)

NULL

T := f(x, y, z, t) = g(x, y, z, t)^2+h(x, y, z, t)^2+a[11]

T1 := g(x, y, z, t) = t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5]

T2 := h(x, y, z, t) = t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10]

L2 := subs({T1, T2}, T)

f(x, y, z, t) = (t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11]

(13)

L3 := eval(F1, L2)

30*(2*a[1]^2+2*a[6]^2)^3*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3-270*(2*a[1]^2+2*a[6]^2)^2*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2+(alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+360*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^4*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+15*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(2*a[1]*a[2]+2*a[6]*a[7]))*(2*a[1]^2+2*a[6]^2)+(beta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^3)*(2*a[1]*a[2]+2*a[6]*a[7])+9*(2*a[1]*a[4]+2*a[6]*a[9])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5+(2*a[1]*a[3]+2*a[6]*a[8])*delta*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-5*(2*a[2]^2+2*a[7]^2)*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^5-120*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^6+30*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^3*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^2-(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])^2*alpha*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4-((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4*(beta*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])+(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[3]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[8])*delta+18*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[4]+18*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[9])*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[1]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[6])+5*(2*(t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])*a[2]+2*(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])*a[7])^2*((t*a[4]+x*a[1]+y*a[2]+z*a[3]+a[5])^2+(t*a[9]+x*a[6]+y*a[7]+z*a[8]+a[10])^2+a[11])^4 = 0

(14)

L4 := collect(L3, [x, y, z, t], 'distributed')

Warning,  computation interrupted

 

` `

(15)

Download systems.mw

This never happened to me before.

Without any changes made in the worksheet, and just executing it again, suddenly Maple 24 gives me all output that starts with

typesetting:-mprintslash

etc

What the heck is this ? and where has the normal output suddenly gone to ?

Before this change Maple did not want to stop an execution on a limit. I had to kill the mserver which then allowed me to save the docuemnt. After that the document has all this unusable typeset nonsense as output.

I opened a new page and pasted the commands into that document. Problem remains the same, so it seems to be something in the system wide config that was changed.

Here is what is causing the problem:

What I noticed  is that my output is now "Line Printer" as default. How did that happen ? I never did that. It must be a consequence of the infinite limit calculation that could not be interrupted (whish Maple will fix their break and interrupt commands).

So how do I set all output to Maple Output. I see no such ability in config. It states there that "Output Display" is set to "Maple Output" , but every new document has line printer as output !!!

Totally unusable now.

The Maple 2024 default Document is largely unreadable to me. the multiplication sign is a minute dot that I miss most of the time on very high resolution monitors.

What really works well for me is Maple Input as was used in Maple 9.5. A Pleasure to work with. Using Maple 2024 it is a real pain to "go figure" all the time.

I tried the Global Config, but there is no way to set the default font and the defualt color so I can get the exact same text and color as Maple 9.5.
After I set the colors to bright red, and change to Monospace 12 font and use mapleinput, all is well.
However there is no way to save this setup as the configuration has no way to set font and color. It does set mapleinput at least.

So how do I fix this GLOBALLY so I dont have to run into Maple2024's microscopic math.

I am just wondering why something that has been bothering me since Maple V up to including Maple 2024 has never been resolved properly.

Why is it so difficult for maple to solve a dead obvious and simple expression e.g.

sqrt(cos(gamma)^(5/3)/sin(2*gamma)^(5/3));

You can use algsubs to tell maple to use an elementary identity to substitute the double angle away, but even then it refuses to simplify the remaining fraction which is elementary at most.

So, when will e.g. this simple multiple generational issue be addressed  so maple can do the obvious simplifications.

There are much more severe examples concerning trigonometric functions under square roots, which was left out in this case to show just one issue.

How i can get this special parameter i try to do substitution in another mw file but stilli can't reach this parameter and without this parameter my PDE is not give me zero so i have to find this r[i] parameter, some letter of my mw file are not similar to paper but r[i]=l[i] as mention is paper al clear and i found all structure just this remain, i am looking for equation (14), thanks for any help 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

NULL

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(1)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(2)

pde1 := a*(diff(u(x, y, z, t), x, t))-((a^4-6*a^2*b^2+b^4)*(1/16))*(diff(u(x, y, z, t), `$`(x, 4)))-(1/4)*(3*(-a^2+b^2))*(diff(u(x, y, z, t)^2, `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))+lambda*(diff(u(x, y, z, t), `$`(z, 2)))+mu*(diff(u(x, y, z, t), y, z))+mu^2*(diff(u(x, y, z, t), `$`(y, 2)))/(4*lambda)

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(a^4-6*a^2*b^2+b^4)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-(3/4)*(-a^2+b^2)*(2*(diff(u(x, y, z, t), x))^2+2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x)))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+mu*(diff(diff(u(x, y, z, t), y), z))+(1/4)*mu^2*(diff(diff(u(x, y, z, t), y), y))/lambda

(3)

Tr := {beta = alpha, delta = alpha, mu = 2*lambda}

{beta = alpha, delta = alpha, mu = 2*lambda}

(4)

pde := subs(Tr, pde1)

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(a^4-6*a^2*b^2+b^4)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-(3/4)*(-a^2+b^2)*(2*(diff(u(x, y, z, t), x))^2+2*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x)))+alpha*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), y))+alpha*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+2*lambda*(diff(diff(u(x, y, z, t), y), z))+lambda*(diff(diff(u(x, y, z, t), y), y))

(5)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, t) = T*u(x, y, z, t)))/T, T) end proc, expand(pde))

a*(diff(diff(u(x, y, z, t), t), x))-(1/16)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*a^4+(3/8)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*a^2*b^2-(1/16)*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))*b^4+alpha*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), y))+alpha*(diff(diff(u(x, y, z, t), x), z))+lambda*(diff(diff(u(x, y, z, t), z), z))+2*lambda*(diff(diff(u(x, y, z, t), y), z))+lambda*(diff(diff(u(x, y, z, t), y), y)), (3/2)*(diff(u(x, y, z, t), x))^2*a^2-(3/2)*(diff(u(x, y, z, t), x))^2*b^2+(3/2)*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))*a^2-(3/2)*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))*b^2

(6)

NULL

eq17 := u(x, y, z, t) = (-a^4+6*a^2*b^2-b^4)*((diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)/(2*a^2-2*b^2)

``NULL

betai := k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

(7)

W := w[i] = ((a^4-6*a^2*b^2+b^4)*k[i]^2-16*lambda*l[i]^2+(-32*lambda*r[i]-16*alpha)*l[i]-16*lambda*r[i]^2-16*alpha*r[i]-16*alpha)/(16*a)

AA := A[12] = (16*(l[1]-l[2]+r[1]-r[2])^2*lambda+3*(k[1]-k[2])^2*(a^2+2*a*b-b^2)*(a^2-2*a*b-b^2))/(16*(l[1]-l[2]+r[1]-r[2])^2*lambda+3*(k[1]+k[2])^2*(a^2+2*a*b-b^2)*(a^2-2*a*b-b^2))

F2 := 1+exp(beta[1])+A[1, 2]*exp(beta[1]+beta[2])+exp(beta[2])

1+exp(beta[1])+A[1, 2]*exp(beta[1]+beta[2])+exp(beta[2])

(8)

NULL

F22 := f(x, y, z, t) = 1+exp((a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/(16*a))+exp((a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/(16*a))

eq := eval(eq17, F22)

u(x, y, z, t) = (-a^4+6*a^2*b^2-b^4)*((k[1]^2*exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+k[2]^2*exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))/(1+exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))-(k[1]*exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+k[2]*exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))^2/(1+exp((1/16)*(a^4*t*k[1]^3-6*a^2*b^2*t*k[1]^3+b^4*t*k[1]^3-16*lambda*t*k[1]*l[1]^2-32*lambda*t*k[1]*l[1]*r[1]-16*lambda*t*k[1]*r[1]^2+16*a*y*k[1]*l[1]+16*a*z*k[1]*r[1]-16*alpha*t*k[1]*l[1]-16*alpha*t*k[1]*r[1]+16*a*x*k[1]-16*alpha*t*k[1]+16*a*eta[1])/a)+exp((1/16)*(a^4*t*k[2]^3-6*a^2*b^2*t*k[2]^3+b^4*t*k[2]^3-16*lambda*t*k[2]*l[2]^2-32*lambda*t*k[2]*l[2]*r[2]-16*lambda*t*k[2]*r[2]^2+16*a*y*k[2]*l[2]+16*a*z*k[2]*r[2]-16*alpha*t*k[2]*l[2]-16*alpha*t*k[2]*r[2]+16*a*x*k[2]-16*alpha*t*k[2]+16*a*eta[2])/a))^2)/(2*a^2-2*b^2)

(9)

pdetest(eq, pde)

Download fusion-undon.mw

I encountered this issue while writing some code. Here is my code:

numArray := [17, 18, 19];
symArray := [x, y, z];
kronArray := map(i -> local j; symArray[i] = symArray[1]^mul(numArray[j], j = 1 .. i - 1), [$ (1 .. 3)]);

When I run it, I get the following warning:

Warning, (in anonymous procedure created in Typesetting:-FI) `j` is implicitly declared local;

After clicking the LINK  to Maple's help, I saw a similar issue in Example 3. However, Example 3 didn't resolve the problem. How can I declare a variable as local within an anonymous function?

As shown in the paper, and in many similar ones, the authors use a particular method that I believe is related to the long wave limit. I’m familiar with other approaches, but the traditional methods haven’t been successful in this case. This author, along with a few others, has tried applying this long wave limit approach, though many papers don’t explicitly mention the substitutions they use to arrive at the lump solution.

I’ve been able to separately find the lump series, but for some of the other solutions, we first need to figure out how to derive this key result. Once that part is clear, the rest should be easier to handle. I've been working through everything step by step and have managed to reproduce many of the solutions from the paper.

Also i don't know how finding (eq17) in paper, which they found by apply long wave limit to (eq7) in paper

additionaly How finding line which i think they found by finding velocity?

Please, if you have any information or insight into how we can obtain this more difficult result, I would really appreciate your help.

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

NULL

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(1)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(2)

alpha := 1; beta := 1; delta := 1; lambda := 1

1

 

1

 

1

 

1

(3)

pde := diff(diff(u(x, y, z, t), t)+6*u(x, y, z, t)*(diff(u(x, y, z, t), x))+diff(u(x, y, z, t), `$`(x, 3)), x)-lambda*(diff(u(x, y, z, t), `$`(y, 2)))+diff(alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z)), x)

diff(diff(u(x, y, z, t), t), x)+6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)-(diff(diff(u(x, y, z, t), y), y))+diff(diff(u(x, y, z, t), x), x)+diff(diff(u(x, y, z, t), x), y)+diff(diff(u(x, y, z, t), x), z)

(4)

thetai := t*w[i]+x*k[i]+y*l[i]+z*r[i]+eta[i]

eq15 := w[i] = -(k[i]^4+k[i]^2+k[i]*l[i]+k[i]*r[i]-l[i]^2)/k[i]

eq17 := u(x, y, z, t) = 2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2

A[sj] := (3*k[i]^4*k[j]^2-6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)/(3*k[i]^4*k[j]^2+6*k[i]^3*k[j]^3+(3*k[j]^4+l[j]^2)*k[i]^2-2*k[i]*k[j]*l[i]*l[j]+k[j]^2*l[i]^2)

F2 := 1+exp(eta[1])+b[1, 2]*exp(eta[1]+eta[2])+exp(eta[2])

1+exp(eta[1])+b[1, 2]*exp(eta[1]+eta[2])+exp(eta[2])

(5)

F22 := 1+exp(eta[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(eta[1]+eta[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(eta[2])

1+exp(eta[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(eta[1]+eta[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(eta[2])

(6)

NULL

NULL

F222 := exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])

exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1])+(3*k[1]^4*k[2]^2-6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)*exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])/(3*k[1]^4*k[2]^2+6*k[1]^3*k[2]^3+(3*k[2]^4+l[2]^2)*k[1]^2-2*k[1]*k[2]*l[1]*l[2]+k[2]^2*l[1]^2)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])

(7)

indets(F222)

{t, x, y, eta[1], eta[2], k[1], k[2], l[1], l[2], r[1], r[2], exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]), exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2]), exp(-(t*k[1]^4+t*k[1]^2+t*k[1]*l[1]+t*k[1]*r[1]-t*l[1]^2-x*k[1]^2-y*k[1]*l[1]-eta[1]*k[1])/k[1]-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]-eta[2]*k[2])/k[2])}

(8)

eq1 := eval(F222, {eta[1] = -1, eta[2] = -1, k[1] = K[1]*epsilon, l[1] = L[1]*epsilon, r[1] = R[1]*epsilon})

exp(-(epsilon^4*t*K[1]^4+epsilon^2*t*K[1]^2+epsilon^2*t*K[1]*L[1]+epsilon^2*t*K[1]*R[1]-epsilon^2*t*L[1]^2-epsilon^2*x*K[1]^2-epsilon^2*y*K[1]*L[1]+epsilon*K[1])/(K[1]*epsilon))+(3*K[1]^4*epsilon^4*k[2]^2-6*K[1]^3*epsilon^3*k[2]^3+(3*k[2]^4+l[2]^2)*K[1]^2*epsilon^2-2*K[1]*epsilon^2*k[2]*L[1]*l[2]+k[2]^2*L[1]^2*epsilon^2)*exp(-(epsilon^4*t*K[1]^4+epsilon^2*t*K[1]^2+epsilon^2*t*K[1]*L[1]+epsilon^2*t*K[1]*R[1]-epsilon^2*t*L[1]^2-epsilon^2*x*K[1]^2-epsilon^2*y*K[1]*L[1]+epsilon*K[1])/(K[1]*epsilon)-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+k[2])/k[2])/(3*K[1]^4*epsilon^4*k[2]^2+6*K[1]^3*epsilon^3*k[2]^3+(3*k[2]^4+l[2]^2)*K[1]^2*epsilon^2-2*K[1]*epsilon^2*k[2]*L[1]*l[2]+k[2]^2*L[1]^2*epsilon^2)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+k[2])/k[2])

(9)

G := limit(eq1, epsilon = 0)

exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+2*k[2])/k[2])+exp(-1)+exp(-(t*k[2]^4+t*k[2]^2+t*k[2]*l[2]+t*k[2]*r[2]-t*l[2]^2-x*k[2]^2-y*k[2]*l[2]+k[2])/k[2])

(10)

Download LWL.mw

Hi,

I'm experimenting with building random series on different topics, inspired by several of your comments, using a table-style layout. For this example, I'm testing systems of linear equations with two unknowns, but I can't manage to generate the systems with curly braces. I hope the purpose of my question is clear. Any ideas? Thanks

Systmes_Idea.mw

3 4 5 6 7 8 9 Last Page 5 of 43