Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

This is first type of solving parameter but  i solved some semilar but the shape of them are so different and solving them different too i did my trail but i can't reach out solution also the author solve by another way which i did too but i have to solve in this way too thanks  for any help !

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := 9*(diff(u(x, y, z, t), t, x))+diff(u(x, y, z, t), `$`(x, 6))-5*(diff(u(x, y, z, t), `$`(x, 3), y)+diff(u(x, y, z, t), `$`(y, 2)))+15*((diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), `$`(x, 3)))+(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), `$`(x, 4)))-(diff(u(x, y, z, t), x))*(diff(u(x, y, z, t), x, y))-(diff(u(x, y, z, t), `$`(x, 2)))*(diff(u(x, y, z, t), y)))+45*(diff(u(x, y, z, t), x))^2*(diff(u(x, y, z, t), `$`(x, 2)))+alpha*(diff(u(x, y, z, t), `$`(x, 2)))+beta*(diff(u(x, y, z, t), x, y))+delta*(diff(u(x, y, z, t), x, z))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

(4)

``

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

9*(diff(diff(u(x, y, z, t), t), x))+diff(diff(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x), x), x)-5*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), y))-5*(diff(diff(u(x, y, z, t), y), y))+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))

 

15*(diff(diff(u(x, y, z, t), x), x))*(diff(diff(diff(u(x, y, z, t), x), x), x))+15*(diff(u(x, y, z, t), x))*(diff(diff(diff(diff(u(x, y, z, t), x), x), x), x))-15*(diff(u(x, y, z, t), x))*(diff(diff(u(x, y, z, t), x), y))-15*(diff(diff(u(x, y, z, t), x), x))*(diff(u(x, y, z, t), y))+45*(diff(u(x, y, z, t), x))^2*(diff(diff(u(x, y, z, t), x), x))

(5)

H := u(x, y, z, t) = 2*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = 2*(diff(f(x, y, z, t), x))/f(x, y, z, t)

(6)

L := eval(pde_linear, H) = 0

2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t) = 0

(7)

numer(lhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0))*denom(rhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0)) = numer(rhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0))*denom(lhs(-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^4-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^3+420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^3-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^4+alpha*(2*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)-6*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^3)+beta*(2*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3)+delta*(2*(diff(diff(diff(f(x, y, z, t), x), x), z))/f(x, y, z, t)-2*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))/f(x, y, z, t)^2-4*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))/f(x, y, z, t)^2+4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))/f(x, y, z, t)^3)+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))/f(x, y, z, t)-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))/f(x, y, z, t)-10*(diff(diff(diff(f(x, y, z, t), x), y), y))/f(x, y, z, t)+1440*(diff(f(x, y, z, t), x))^7/f(x, y, z, t)^7+18*(diff(diff(diff(f(x, y, z, t), t), x), x))/f(x, y, z, t)+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))/f(x, y, z, t)^3-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5/f(x, y, z, t)^6+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^5-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))/f(x, y, z, t)^4-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^3+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3/f(x, y, z, t)^4+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4/f(x, y, z, t)^5+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2/f(x, y, z, t)^3+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))/f(x, y, z, t)^3-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))/f(x, y, z, t)^2-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)^2-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))/f(x, y, z, t)^2+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))/f(x, y, z, t)^2+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^2-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^3+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))/f(x, y, z, t)^2-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))/f(x, y, z, t)^3+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))/f(x, y, z, t)^4-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))/f(x, y, z, t)^5+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))/f(x, y, z, t)^2+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)^2 = 0))

420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-6*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*alpha-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))*beta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*beta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*beta-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))*delta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))*delta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))*delta-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))*f(x, y, z, t)^6-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))*f(x, y, z, t)^6-10*(diff(diff(diff(f(x, y, z, t), x), y), y))*f(x, y, z, t)^6+18*(diff(diff(diff(f(x, y, z, t), t), x), x))*f(x, y, z, t)^6-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^5-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))*f(x, y, z, t)^5+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^5-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))*f(x, y, z, t)^5-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5*f(x, y, z, t)+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^3+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)^2+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2*f(x, y, z, t)^4+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^5+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), x))*alpha+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^3*alpha+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), y))*beta+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), z))*delta+1440*(diff(f(x, y, z, t), x))^7 = 0

(8)

F1 := %

420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^4-2520*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^2*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^3-6*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*alpha-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), y))*beta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*beta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*beta-2*f(x, y, z, t)^5*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), z))*delta-4*f(x, y, z, t)^5*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), z))*delta+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), z))*delta-80*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+360*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^3-240*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^4+2*(diff(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x), x))*f(x, y, z, t)^6-10*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), y))*f(x, y, z, t)^6-10*(diff(diff(diff(f(x, y, z, t), x), y), y))*f(x, y, z, t)^6+18*(diff(diff(diff(f(x, y, z, t), t), x), x))*f(x, y, z, t)^6-14*(diff(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-42*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(diff(f(x, y, z, t), x), x))*f(x, y, z, t)^5-70*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), x))*f(x, y, z, t)^5+10*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+40*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), y))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5+40*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^5-120*(diff(diff(diff(f(x, y, z, t), x), x), y))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4+60*(diff(diff(f(x, y, z, t), x), x))*(diff(diff(diff(f(x, y, z, t), x), x), y))*f(x, y, z, t)^5-60*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), y))*f(x, y, z, t)^4+240*(diff(f(x, y, z, t), x))^3*(diff(diff(f(x, y, z, t), x), y))*f(x, y, z, t)^3-240*(diff(f(x, y, z, t), x))^4*(diff(f(x, y, z, t), y))*f(x, y, z, t)^2+20*(diff(diff(f(x, y, z, t), x), y))*(diff(f(x, y, z, t), y))*f(x, y, z, t)^5+10*(diff(f(x, y, z, t), x))*(diff(diff(f(x, y, z, t), y), y))*f(x, y, z, t)^5+280*(diff(diff(diff(f(x, y, z, t), x), x), x))^2*(diff(f(x, y, z, t), x))*f(x, y, z, t)^4-5040*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), x))^5*f(x, y, z, t)+5040*(diff(diff(f(x, y, z, t), x), x))^2*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^2-1260*(diff(diff(f(x, y, z, t), x), x))^3*(diff(f(x, y, z, t), x))*f(x, y, z, t)^3-20*(diff(f(x, y, z, t), x))*(diff(f(x, y, z, t), y))^2*f(x, y, z, t)^4+84*(diff(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x), x))*(diff(f(x, y, z, t), x))^2*f(x, y, z, t)^4-420*(diff(diff(diff(diff(f(x, y, z, t), x), x), x), x))*(diff(f(x, y, z, t), x))^3*f(x, y, z, t)^3+1680*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(f(x, y, z, t), x))^4*f(x, y, z, t)^2+420*(diff(diff(diff(f(x, y, z, t), x), x), x))*(diff(diff(f(x, y, z, t), x), x))^2*f(x, y, z, t)^4+36*(diff(f(x, y, z, t), x))^2*(diff(f(x, y, z, t), t))*f(x, y, z, t)^4-36*(diff(diff(f(x, y, z, t), t), x))*(diff(f(x, y, z, t), x))*f(x, y, z, t)^5-18*(diff(diff(f(x, y, z, t), x), x))*(diff(f(x, y, z, t), t))*f(x, y, z, t)^5+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), x))*alpha+4*f(x, y, z, t)^4*(diff(f(x, y, z, t), x))^3*alpha+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), y))*beta+2*f(x, y, z, t)^6*(diff(diff(diff(f(x, y, z, t), x), x), z))*delta+1440*(diff(f(x, y, z, t), x))^7 = 0

(9)

NULL

S := f(x, y, z, t) = a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])

f(x, y, z, t) = a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])

(10)

A := eval(F1, S)

600*a[1]^4*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3+1204*a[1]^3*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4-4200*a[1]^4*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3-500*a[1]^3*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+30*a[1]^2*k[1]*p[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-54*a[1]^2*w[1]*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*alpha-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*beta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*beta-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*r[1]*delta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*r[1]*delta+18*a[1]*w[1]*k[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]*p[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6+2*a[1]*k[1]^7*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]^4*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*beta+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*r[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*delta+1440*a[1]^7*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^7-5040*a[1]^6*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))+6720*a[1]^5*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2-20*a[1]^3*k[1]*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+36*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*w[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^3*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*alpha+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*alpha-126*a[1]^2*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5+150*a[1]^2*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-240*a[1]^5*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2 = 0

(11)

simplify(1440*a[1]^7*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^7+6720*a[1]^5*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2-126*a[1]^2*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5+1204*a[1]^3*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4-4200*a[1]^4*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3+2*a[1]*k[1]^7*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-5040*a[1]^6*k[1]^7*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))+600*a[1]^4*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3-500*a[1]^3*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+30*a[1]^2*k[1]*p[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-54*a[1]^2*w[1]*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*alpha+18*a[1]*w[1]*k[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]*p[1]^2*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-10*a[1]*k[1]^4*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6-20*a[1]^3*k[1]*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]^2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+36*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*w[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^3*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*alpha+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^3*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*alpha+150*a[1]^2*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5-240*a[1]^5*k[1]^4*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*p[1]*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*p[1]*beta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*p[1]*beta-6*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^5*a[1]^2*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^2*r[1]*delta+4*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^4*a[1]^3*k[1]^2*(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^3*r[1]*delta+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*p[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*beta+2*(a[0]+a[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]))^6*a[1]*k[1]^2*r[1]*exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*delta = 0)

2*a[0]*k[1]*(-57*a[0]^4*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]*exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1])+302*a[0]^3*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^2*exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1])-302*a[0]^2*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^3*exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1])+57*a[0]*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]^4*exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1])+(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*a[0]^5-exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1])*a[1]^5)*(k[1]^6-5*k[1]^3*p[1]+k[1]^2*alpha+(beta*p[1]+delta*r[1]+9*w[1])*k[1]-5*p[1]^2))*a[1] = 0

(12)

E := %

2*a[0]*k[1]*(-57*a[0]^4*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]*exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1])+302*a[0]^3*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^2*exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1])-302*a[0]^2*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^3*exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1])+57*a[0]*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]^4*exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1])+(exp(t*w[1]+x*k[1]+y*p[1]+z*r[1])*a[0]^5-exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1])*a[1]^5)*(k[1]^6-5*k[1]^3*p[1]+k[1]^2*alpha+(beta*p[1]+delta*r[1]+9*w[1])*k[1]-5*p[1]^2))*a[1] = 0

(13)

indets(E)

{alpha, beta, delta, t, x, y, z, a[0], a[1], k[1], p[1], r[1], w[1], exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]), exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1]), exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1]), exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1]), exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1]), exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1])}

(14)

E1 := subs({exp(t*w[1]+x*k[1]+y*p[1]+z*r[1]) = eX, exp(2*t*w[1]+2*x*k[1]+2*y*p[1]+2*z*r[1]) = eY, exp(3*t*w[1]+3*x*k[1]+3*y*p[1]+3*z*r[1]) = eZ, exp(4*t*w[1]+4*x*k[1]+4*y*p[1]+4*z*r[1]) = eW, exp(5*t*w[1]+5*x*k[1]+5*y*p[1]+5*z*r[1]) = eV, exp(6*t*w[1]+6*x*k[1]+6*y*p[1]+6*z*r[1]) = eB}, E)

2*a[0]*k[1]*(-57*a[0]^4*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]*eY+302*a[0]^3*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^2*eZ-302*a[0]^2*(k[1]^6+(25/151)*k[1]^3*p[1]+(1/151)*k[1]^2*alpha+(1/151)*(beta*p[1]+delta*r[1]+9*w[1])*k[1]-(5/151)*p[1]^2)*a[1]^3*eW+57*a[0]*(k[1]^6-(15/19)*k[1]^3*p[1]-(1/19)*k[1]^2*alpha+(1/19)*(-beta*p[1]-delta*r[1]-9*w[1])*k[1]+(5/19)*p[1]^2)*a[1]^4*eV+(-eB*a[1]^5+eX*a[0]^5)*(k[1]^6-5*k[1]^3*p[1]+k[1]^2*alpha+(beta*p[1]+delta*r[1]+9*w[1])*k[1]-5*p[1]^2))*a[1] = 0

(15)

indets(E1)

{alpha, beta, delta, eB, eV, eW, eX, eY, eZ, a[0], a[1], k[1], p[1], r[1], w[1]}

(16)

p2c := normal(E1)

-2*a[0]*k[1]*(eB*a[1]^5*k[1]^6-57*eV*a[0]*a[1]^4*k[1]^6+302*eW*a[0]^2*a[1]^3*k[1]^6-eX*a[0]^5*k[1]^6+57*eY*a[0]^4*a[1]*k[1]^6-302*eZ*a[0]^3*a[1]^2*k[1]^6-5*eB*a[1]^5*k[1]^3*p[1]+45*eV*a[0]*a[1]^4*k[1]^3*p[1]+50*eW*a[0]^2*a[1]^3*k[1]^3*p[1]+5*eX*a[0]^5*k[1]^3*p[1]-45*eY*a[0]^4*a[1]*k[1]^3*p[1]-50*eZ*a[0]^3*a[1]^2*k[1]^3*p[1]+alpha*eB*a[1]^5*k[1]^2+3*alpha*eV*a[0]*a[1]^4*k[1]^2+2*alpha*eW*a[0]^2*a[1]^3*k[1]^2-alpha*eX*a[0]^5*k[1]^2-3*alpha*eY*a[0]^4*a[1]*k[1]^2-2*alpha*eZ*a[0]^3*a[1]^2*k[1]^2+beta*eB*a[1]^5*k[1]*p[1]+3*beta*eV*a[0]*a[1]^4*k[1]*p[1]+2*beta*eW*a[0]^2*a[1]^3*k[1]*p[1]-beta*eX*a[0]^5*k[1]*p[1]-3*beta*eY*a[0]^4*a[1]*k[1]*p[1]-2*beta*eZ*a[0]^3*a[1]^2*k[1]*p[1]+delta*eB*a[1]^5*k[1]*r[1]+3*delta*eV*a[0]*a[1]^4*k[1]*r[1]+2*delta*eW*a[0]^2*a[1]^3*k[1]*r[1]-delta*eX*a[0]^5*k[1]*r[1]-3*delta*eY*a[0]^4*a[1]*k[1]*r[1]-2*delta*eZ*a[0]^3*a[1]^2*k[1]*r[1]+9*eB*a[1]^5*k[1]*w[1]-5*eB*a[1]^5*p[1]^2+27*eV*a[0]*a[1]^4*k[1]*w[1]-15*eV*a[0]*a[1]^4*p[1]^2+18*eW*a[0]^2*a[1]^3*k[1]*w[1]-10*eW*a[0]^2*a[1]^3*p[1]^2-9*eX*a[0]^5*k[1]*w[1]+5*eX*a[0]^5*p[1]^2-27*eY*a[0]^4*a[1]*k[1]*w[1]+15*eY*a[0]^4*a[1]*p[1]^2-18*eZ*a[0]^3*a[1]^2*k[1]*w[1]+10*eZ*a[0]^3*a[1]^2*p[1]^2)*a[1] = 0

(17)

indets(p2c)

{alpha, beta, delta, eB, eV, eW, eX, eY, eZ, a[0], a[1], k[1], p[1], r[1], w[1]}

(18)

eqns := {coeffs(collect(p2c, {eB, eV, eW, eX, eY, eZ}, distributed), {eB, eV, eW, eX, eY, eZ})}; nops(%)

Error, invalid arguments to coeffs

 

1

(19)

NULL

Co := solve(E1, {a[0], a[1], k[1], n[1], p[1], r[1], w[1]}, explicit)

{a[0] = a[0], a[1] = a[1], k[1] = 0, n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}, {a[0] = a[0], a[1] = 0, k[1] = k[1], n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}, {a[0] = 0, a[1] = a[1], k[1] = k[1], n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}, {a[0] = a[0], a[1] = a[1], k[1] = k[1], n[1] = n[1], p[1] = p[1], r[1] = -(eB*a[1]^5*k[1]^6-57*eV*a[0]*a[1]^4*k[1]^6+302*eW*a[0]^2*a[1]^3*k[1]^6-eX*a[0]^5*k[1]^6+57*eY*a[0]^4*a[1]*k[1]^6-302*eZ*a[0]^3*a[1]^2*k[1]^6-5*eB*a[1]^5*k[1]^3*p[1]+45*eV*a[0]*a[1]^4*k[1]^3*p[1]+50*eW*a[0]^2*a[1]^3*k[1]^3*p[1]+5*eX*a[0]^5*k[1]^3*p[1]-45*eY*a[0]^4*a[1]*k[1]^3*p[1]-50*eZ*a[0]^3*a[1]^2*k[1]^3*p[1]+alpha*eB*a[1]^5*k[1]^2+3*alpha*eV*a[0]*a[1]^4*k[1]^2+2*alpha*eW*a[0]^2*a[1]^3*k[1]^2-alpha*eX*a[0]^5*k[1]^2-3*alpha*eY*a[0]^4*a[1]*k[1]^2-2*alpha*eZ*a[0]^3*a[1]^2*k[1]^2+beta*eB*a[1]^5*k[1]*p[1]+3*beta*eV*a[0]*a[1]^4*k[1]*p[1]+2*beta*eW*a[0]^2*a[1]^3*k[1]*p[1]-beta*eX*a[0]^5*k[1]*p[1]-3*beta*eY*a[0]^4*a[1]*k[1]*p[1]-2*beta*eZ*a[0]^3*a[1]^2*k[1]*p[1]+9*eB*a[1]^5*k[1]*w[1]-5*eB*a[1]^5*p[1]^2+27*eV*a[0]*a[1]^4*k[1]*w[1]-15*eV*a[0]*a[1]^4*p[1]^2+18*eW*a[0]^2*a[1]^3*k[1]*w[1]-10*eW*a[0]^2*a[1]^3*p[1]^2-9*eX*a[0]^5*k[1]*w[1]+5*eX*a[0]^5*p[1]^2-27*eY*a[0]^4*a[1]*k[1]*w[1]+15*eY*a[0]^4*a[1]*p[1]^2-18*eZ*a[0]^3*a[1]^2*k[1]*w[1]+10*eZ*a[0]^3*a[1]^2*p[1]^2)/(delta*k[1]*(eB*a[1]^5+3*eV*a[0]*a[1]^4+2*eW*a[0]^2*a[1]^3-eX*a[0]^5-3*eY*a[0]^4*a[1]-2*eZ*a[0]^3*a[1]^2)), w[1] = w[1]}

(20)

NULL

case1 := Co[1]

{a[0] = a[0], a[1] = a[1], k[1] = 0, n[1] = n[1], p[1] = p[1], r[1] = r[1], w[1] = w[1]}

(21)

F := subs(case1, S)

f(x, y, z, t) = a[0]+a[1]*exp(t*w[1]+y*p[1]+z*r[1])

(22)

F1 := eval(H, F)

u(x, y, z, t) = 0

(23)

NULL

pdetest(F1, pde)

0

(24)

Download F-P-O-W.mw

sometime this code i use make a problem for me and sometime they work very good how i can get something general for use in all equation 

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, w, t))

u(x, y, z, w, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, w, t))

f(x, y, z, w, t)*`will now be displayed as`*f

(3)

pde := 4*(diff(u(x, y, z, w, t), x, t))-(diff(u(x, y, z, w, t), `$`(x, 3), y))+diff(u(x, y, z, w, t), x, `$`(y, 3))+12*(diff(u(x, y, z, w, t), x))*(diff(u(x, y, z, w, t), y))+12*u(x, y, z, w, t)*(diff(u(x, y, z, w, t), x, y))-6*(diff(u(x, y, z, w, t), z, w)) = 0

4*(diff(diff(u(x, y, z, w, t), t), x))-(diff(diff(diff(diff(u(x, y, z, w, t), x), x), x), y))+diff(diff(diff(diff(u(x, y, z, w, t), x), y), y), y)+12*(diff(u(x, y, z, w, t), x))*(diff(u(x, y, z, w, t), y))+12*u(x, y, z, w, t)*(diff(diff(u(x, y, z, w, t), x), y))-6*(diff(diff(u(x, y, z, w, t), w), z)) = 0

(4)

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

0

 

4*(diff(diff(u(x, y, z, w, t), t), x))-(diff(diff(diff(diff(u(x, y, z, w, t), x), x), x), y))+diff(diff(diff(diff(u(x, y, z, w, t), x), y), y), y)+12*(diff(u(x, y, z, w, t), x))*(diff(u(x, y, z, w, t), y))+12*u(x, y, z, w, t)*(diff(diff(u(x, y, z, w, t), x), y))-6*(diff(diff(u(x, y, z, w, t), w), z)) = 0

(5)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, w, t) = a*u(x, y, z, w, t)))/a, a) end proc, expand(pde))

() = 0, 4*(diff(diff(u(x, y, z, w, t), t), x))-(diff(diff(diff(diff(u(x, y, z, w, t), x), x), x), y))+diff(diff(diff(diff(u(x, y, z, w, t), x), y), y), y)+12*(diff(u(x, y, z, w, t), x))*(diff(u(x, y, z, w, t), y))+12*u(x, y, z, w, t)*(diff(diff(u(x, y, z, w, t), x), y))-6*(diff(diff(u(x, y, z, w, t), w), z)) = ()

(6)
 

NULL

Download seperate_L-NL.mw

my answer is so different but  and i want remove this lambert in my test? can we do something for giving question exactly solve the question by model i have a book of ode which a lot of time i do some trail but have a problem? how i can remove this issue specially for bernoli and  other type?

restart

with(DEtools, odeadvisor)

ode := diff(y(x), x)+x/y(x)+2 = 0

diff(y(x), x)+x/y(x)+2 = 0

(1)

Student:-ODEs:-Type(ode)

{}

(2)

odeadvisor(ode)

[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

(3)

Student:-ODEs:-Type(ode); W := dsolve(ode); odetest(W, ode)

{}

 

y(x) = -x*(LambertW(-c__1*x)+1)/LambertW(-c__1*x)

 

0

(4)

Download test.mw

A lot of time i finded but i have a dubt about this why this is happen each time number of equation for finding parameter a_12 is 4 but this time is 28 which i thoght some thing must be mistake also the author of paper use  u=2(ln(f))_xx which is wronge and not satisfy but i try to find R which is strange again is not number contain parameter but is satisfy also in equation 14 i don't know each i is 2 or 1 or it can be i remain itself?

thanks for any help ?

t1.mw

In this example by applying the substitution i can get half of paicewise function but how get another  half ? i am looking for B_rs as Piecewise function ?

restart

eij := ((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-(2*(-3*k[j]*(k[i]-k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-(2*(3*k[j]*(k[i]+k[j])*l[j]*(1/2)+beta))*l[j]*l[i]+beta*l[j]^2)

((-3*k[i]*(k[i]-k[j])*l[j]+beta)*l[i]^2-2*(-(3/2)*k[j]*(k[i]-k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(k[i]+k[j])*l[j]+beta)*l[i]^2-2*((3/2)*k[j]*(k[i]+k[j])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

(1)

eval(eij, k[j] = b*k[i]); series(%, k[i], 3); convert(%, polynom); eval(%, b = k[j]/k[i]); Bij := (%-1)/(k[i]*k[j])

((-3*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*(-(3/2)*b*k[i]*(-b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)/((-3*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[i]^2-2*((3/2)*b*k[i]*(b*k[i]+k[i])*l[j]+beta)*l[j]*l[i]+beta*l[j]^2)

 

series(1+((-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2))*k[i]^2+O(k[i]^4),k[i],4)

 

1+(-3*(-b+1)*l[j]*l[i]^2+3*b*(-b+1)*l[j]^2*l[i]+3*(b+1)*l[j]*l[i]^2+3*b*(b+1)*l[j]^2*l[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

1+(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]^2/(beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)

 

(-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j])

(2)

simplify((-3*(-k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(-k[j]/k[i]+1)*l[j]^2*l[i]/k[i]+3*(k[j]/k[i]+1)*l[j]*l[i]^2+3*k[j]*(k[j]/k[i]+1)*l[j]^2*l[i]/k[i])*k[i]/((beta*l[i]^2-2*beta*l[i]*l[j]+beta*l[j]^2)*k[j]))

6*l[j]*l[i]*(l[i]+l[j])/((l[i]-l[j])^2*beta)

(3)


Download Lim.mw

why i get error in end and how i can fix this error?

restart

with(PDEtools)

undeclare(prime, quiet); declare(u(x, y, t), quiet); declare(f(x, y, t), quiet)

theta := i -> t*w[i]+y*l[i]+x:

eqf := f(x, y, t) = theta(1)*theta(2)+Bij(1, 2):

eqfcomplex := eval(eqf, l[2] = conjugate(l[1])):

eq17 := u(x, y, t) =2*diff(f(x, y, t), x)/f(x, y, t):

equ := eval(eq17, eqfcomplex):

sys := map(normal, {diff(rhs(equ), x), diff(rhs(equ), y)}):

nsys  := map(numer, sys):
nroot := solve(nsys, {x, y}, explicit):

dsys  := map(denom, sys):
droot := solve(dsys, {x, y}, explicit):

{nroot} intersect {droot}

{}

(1)

compact_ans1 := nroot[1]:

__w := seq(w[i] = (-beta*l[i]^2 - b*l[i] - a), i=1..2):

__Bij := (i,j) -> 12*alpha/(beta*(l[i] - l[j])^2):

eval(eval(compact_ans1, {__w, Bij(1, 2) = __Bij(1, 2)}), l[1]=lambda[1]+I*lambda[2])
assuming lambda[1]::real, lambda[2]::real:
 

ans1 := map(simplify, %, size): # it's up to you to use another simplification strategy

eqp1 := eval(eval(ans1, l[2] = conjugate(l[1])), l[1] = lambda[1]+I*lambda[2])

NULL

# Do the same for the other nroot solutions

eqp := {x = xp+((1/2)*beta*lambda[2]^3+I*(-beta*lambda[1]-b)*lambda[2]^2*(1/2)-((1/2)*beta*conjugate(lambda[1]+I*lambda[2])^2-(1/2)*beta*lambda[1]^2+(1/2)*b*conjugate(lambda[1]+I*lambda[2])+a)*lambda[2]+I*lambda[1]*(conjugate(lambda[1]+I*lambda[2])-lambda[1])*(beta*conjugate(lambda[1]+I*lambda[2])+beta*lambda[1]+b)*(1/2))*t/lambda[2], y = yp-(I*beta*lambda[2]^2+(2*beta*lambda[1]+b)*lambda[2]+I*((conjugate(lambda[1]+I*lambda[2])+lambda[1])*beta+b)*(conjugate(lambda[1]+I*lambda[2])-lambda[1]))*t/(2*lambda[2])}

NULL

vx, vy := diff(eval(x, eqp), t), diff(eval(y, eqp), t); dydx := simplify(vy/vx)

eqfp := dchange(eqp, eqfcomplex, [xp, yp], params = [a, b, alpha, beta, `λ__1`, `λ__2`], simplify); eq17p := dchange(eqp, eq17, [xp, yp], params = [a, b, alpha, beta, `λ__1`, `λ__2`], simplify); eqt := simplify(eval(eq17p, eqfp))

eqt1 := eval(subs({xp = x, yp = y}, eqt), l[1] = lambda[1]+I*lambda[2])

with(plots); lambda[1] := .14; lambda[2] := .68; alpha := -.46; beta := 1.83; a := 1.56; b := -.19; eq := y = (-beta*conjugate(lambda[1]+I*lambda[2])^2-b*conjugate(lambda[1]+I*lambda[2])-beta*lambda[2]^2+I*(2*beta*lambda[1]+b)*lambda[2]+lambda[1]*(beta*lambda[1]+b))*(x+(2*I)*sqrt(3)*lambda[1]*sqrt(alpha/(beta*(lambda[1]+I*lambda[2]-conjugate(lambda[1]+I*lambda[2]))^2))/lambda[2])/((lambda[1]+I*lambda[2])*beta*conjugate(lambda[1]+I*lambda[2])^2+(lambda[1]+I*lambda[2])*b*conjugate(lambda[1]+I*lambda[2])-I*beta*lambda[2]^3+(-beta*lambda[1]-b)*lambda[2]^2+I*(-beta*lambda[1]^2+2*a)*lambda[2]-beta*lambda[1]^3-b*lambda[1]^2); U := proc (x, y, a, b, alpha, beta, `λ__1`, `λ__2`) options operator, arrow; rhs(eqt1) end proc; contour1 := contourplot(eval(U(x, y, a, b, alpha, beta, `λ__1`, `λ__2`), t = -50), x = -200 .. 200, y = -100 .. 100, contours = 30, color = red, grid = [100, 100], transparency = .1); contour2 := contourplot(eval(U(x, y, a, b, alpha, beta, `λ__1`, `λ__2`), t = 0), x = -200 .. 200, y = -100 .. 100, contours = 30, color = green, grid = [100, 100], transparency = .1); contour3 := contourplot(eval(U(x, y, a, b, alpha, beta, `λ__1`, `λ__2`), t = 50), x = -200 .. 200, y = -100 .. 100, contours = 30, color = blue, grid = [100, 100], transparency = .1); trajectory_plot := implicitplot(eq, x = -200 .. 200, y = -200 .. 200, color = black, thickness = 1); T := textplot([[100, 45, "t=50", color = blue], [45, -10, "t=0", color = green], [-100, -45, "t=-50", color = red]], font = [Times, Roman, 16]); display(contour1, contour2, contour3, trajectory_plot, T, labels = ["x", "y"], scaling = constrained, size = [1200, 800])

.14

 

.68

 

-.46

 

1.83

 

1.56

 

-.19

 

y = (.4755583090+0.*I)*(x+(-0.+.1517971372*I)*3^(1/2))

 

proc (x, y, a, b, alpha, beta, lambda__1, lambda__2) options operator, arrow; rhs(eqt1) end proc

 

Error, (in plot/iplot2d) invalid input: Plot:-ColorBar expects its 2nd argument, ymin, to be of type numeric, but received infinity

 

Error, (in plot/iplot2d) invalid input: Plot:-ColorBar expects its 2nd argument, ymin, to be of type numeric, but received infinity

 

Error, (in plot/iplot2d) invalid input: Plot:-ColorBar expects its 2nd argument, ymin, to be of type numeric, but received infinity

 

Error, (in plots:-display) expecting plot structure but received: contour1

 
8

Download line-plot.mw

How do I change the legend position so it doesn't cover the plot label?

Before entertaining non-standard solutions to this problem such as building my own from scratch, is the a standard method for changing the position of the default legend generated along with a standard plot? I couldn't find anything about custom legend positions in the help sheets.

I can't help but wonder why this observed behaviour occurs by default? In what kind of plot would I prefer the plot labels to be obscured by the plot legend?



legend_covers_plot_labels.mw

Can I open Maple 2025 files in Maple 2024? Further, what if the files don't use Maple 2025 features/packages? Does that change the outcome?

Using inttrans package fourier (Dirac(t-T),t,w) gives the correct answer

exp(-I*T*w).

Taking immediatel the inverse transform I get only

invfourier(exp(-I*T*w), w, t),

but the the expression remains unevaluated and cannot be brought to evaluate by any means that I know. Funny thing: Taking just plain Fourier Transform and Inverse in the usual integral form "int" it works flawlessly. Apparently Maple knows how to deal with distributions in this context. What am I doing wrong?

in a lot of my function i have a interval which is make my function singular and i don't know how remove this singularity even when i am change a lot of parameter with explore which explore option for plot is a little bit heavy for more than  7 or 8 parameter for running , and i know the shape of the graph is 2-soliton and 1-breather(zig-zag) but i have to see the shape and make my plot have a best shape  there is any idea for fixing this issue?

singular-interval.mw

I tried the following procedure in a worksheet; Maple did not like it and claimed there was an error. However, I cannot even copy this to a Maple prompt; it jumps to another type of region. Any ideas? If I retype the command there is no problem with an error.

It reminds me of Maple 2 and the letter t which sometimes had to be retyped to get Maple to respond-a very strange bug which was eliminated years ago.

Hey guys, 

 

I try to solve big systems of polynomial equations and inequalities. Therefore I use the command SemiAlgebraic. In the moment I take those result and want to go on calculating with them. Sadly it turns out, that solve has some problems with RootOf expressions. It doesnt find a solution (althoug the graph shows that there is one) and gives the warning solution may have been lost. So now I though I might just aks SemiAlgebraic to give me solutions without RootOf expressions. For example you can write {x = RootOf(_Z^2 - y)+1, 1 < y, y < 2} as {x=t+1, y=t^2,1<t<2^0.5 . This might be easier to work with for solve. 

So my question is: Is there any way I can tell SemiAlgebraic precisely in what form the solution should be? 
Since the websites are down Im not able to do a first own research on this problem. So thank you in advance. 

Regards

Felix

in some equation i don't have problem but in a lot of them this problem is come up for me and i don't know how fix this issue?

restart

with(PDEtools)

undeclare(prime, quiet); declare(u(x, y, t), quiet); declare(f(x, y, t), quiet)

``

(1)

thetai := t*w[i]+y*l[i]+x

eqw := w[i] = (-1+sqrt(-4*b*beta*l[i]-4*a*beta+1))/(2*beta)

Bij := proc (i, j) options operator, arrow; -24*alpha*beta/(sqrt(1+(-4*b*l[j]-4*a)*beta)*sqrt(1+(-4*b*l[i]-4*a)*beta)-1+((2*l[i]+2*l[j])*b+4*a)*beta) end proc

NULL

theta1 := normal(eval(eval(thetai, eqw), i = 1)); theta2 := normal(eval(eval(thetai, eqw), i = 2))

eqf := f(x, y, t) = theta1*theta2+Bij(1, 2)

eqfcomplex := eval(eval(eval(eqf, l[2] = conjugate(l[1])), l[1] = lambda[1]+I*lambda[2]))

eq17 := u(x, y, t) = 2*(diff(f(x, y, t), x))/f(x, y, t); equ := simplify(eval(eq17, eqfcomplex))

u(x, y, t) = 8*(-(1/2)*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*(1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)-b*beta*conjugate(lambda[1]+I*lambda[2])+1/2-(b*(lambda[1]+I*lambda[2])+2*a)*beta)*((1/2)*t*(1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)+(1/2)*t*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)+conjugate(lambda[1]+I*lambda[2])*y*beta+((lambda[1]+I*lambda[2])*y+2*x)*beta-t)/((1+((-(4*I)*lambda[2]-4*lambda[1])*b-4*a)*beta)^(1/2)*(-(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*((2*y*((lambda[1]+I*lambda[2])*y+x)*beta+t*(b*t-y))*conjugate(lambda[1]+I*lambda[2])+2*x*((lambda[1]+I*lambda[2])*y+x)*beta+((b*(lambda[1]+I*lambda[2])+2*a)*t-(lambda[1]+I*lambda[2])*y-2*x)*t)+4*(I*lambda[2]-conjugate(lambda[1]+I*lambda[2])+lambda[1])*((1/2)*conjugate(lambda[1]+I*lambda[2])*b*y*beta+(a*y-(1/2)*b*x)*beta+(1/4)*b*t-(1/4)*y)*t)-4*t*(-4*b*beta*conjugate(lambda[1]+I*lambda[2])-4*a*beta+1)^(1/2)*(conjugate(lambda[1]+I*lambda[2])*(beta*(-y*((1/2)*b*(lambda[1]+I*lambda[2])+a)+(1/2)*b*x)-(1/4)*b*t+(1/4)*y)+(((I*lambda[1]*lambda[2]+(1/2)*lambda[1]^2-(1/2)*lambda[2]^2)*b+a*(lambda[1]+I*lambda[2]))*y-(1/2)*(lambda[1]+I*lambda[2])*b*x)*beta+(1/4)*(b*t-y)*(lambda[1]+I*lambda[2]))+4*y*beta*b*conjugate(lambda[1]+I*lambda[2])^2*(-((lambda[1]+I*lambda[2])*y+x)*beta+(1/2)*t)+conjugate(lambda[1]+I*lambda[2])*(-4*beta^2*(y^2*(b*(lambda[1]^2-lambda[2]^2+(2*I)*lambda[1]*lambda[2])+2*a*(lambda[1]+I*lambda[2]))+2*x*(b*(lambda[1]+I*lambda[2])+a)*y+b*x^2)+2*beta*(-4*b*(b*(lambda[1]+I*lambda[2])+a)*t^2+2*t*(y*(b*(lambda[1]+I*lambda[2])+a)+b*x)+y*((lambda[1]+I*lambda[2])*y+x))+b*t^2-t*y)+4*(-2*((I*lambda[1]*lambda[2]+(1/2)*lambda[1]^2-(1/2)*lambda[2]^2)*b+a*(lambda[1]+I*lambda[2]))*x*y-(lambda[1]+I*lambda[2])*x^2*b-2*a*x^2+12*alpha)*beta^2+2*beta*(-4*a*(b*(lambda[1]+I*lambda[2])+a)*t^2+t*(y*(b*(lambda[1]^2-lambda[2]^2+(2*I)*lambda[1]*lambda[2])+2*a*(lambda[1]+I*lambda[2]))+2*(b*(lambda[1]+I*lambda[2])+2*a)*x)+x*((lambda[1]+I*lambda[2])*y+x))+((b*(lambda[1]+I*lambda[2])+2*a)*t-(lambda[1]+I*lambda[2])*y-2*x)*t)

(2)

ans := solve({diff(rhs(equ), x), diff(rhs(equ), y)}, {x, y}, explicit)

 

``

Download critical-point.mw

Hey guys, 

From a former calculation I got a set of points as a implicit RootOf function for an intervall. Now I want to check, if these points are in a certain area. So i thougt I take the RootOf function, the intervall and the inequalities (which describe the target area) and use the solve command. But then I get the warning, solutions may have been lost and no solution. When you draw the implicit function you can see thats in the right area (above y=1 and below y=x). So there should be a clear anwer, giving me back the whole RootOf function in the intervall.

Download QUESTI~2.MW

Since there was an error uploading the picture here the code 

restart;
Sol := {x = RootOf(_Z^2 - y, index = real[2]) + 1, 1 < y, y < 2};
area := {1 < y, y < x};
Sol_area := solve(Sol union area);
print(Sol_area);

So why do I get this warning, the calculation seems quite easy? And is there a workaround? Or a diffrent kind of solve function? SemiAlgebraic is as far as i know only for polynomials. So I got an error as well. Since the websites are down I could start an own reasearch before. So thank you in advance. 

Regards

Felix

Hey guys, 

I have a problem with the solve command. And since the websites are down, I cant help myself. I have a function x(y) and an intervall for y. This function or the set of points described by the function should now be transformed to another area of the plane. So now I can get a(x,y)=1/y and b(x,y)=x/(x+y-1) with just plugging in, then everything depeends from the y Invtervall. But I want to get the form b(a) and an intervall for a. So that I can see the function directly. So i thought I just put everything into the solve command and than ask for a solution for {a,b} and expected to get what I want. (Uploading the script here gives an error)
 

restart;
Sol := solve({a = 1/y, b = x/(x + y - 1), x = (y - 1)^2, 1 < y, y < 5/4});
Sol_ab := solve({a = 1/y, b = x/(x + y - 1), x = (y - 1)^2, 1 < y, y < 5/4}, {a, b});

#expected (or wanted) solution
#with y = 1/a and the inequalities we get 4/5 < a and a < 1 with y
#with y = we get x(a)/a and y(a) and reach b = 1/a - 1
#all together: Sol={b=1/a - 1, 4/4<a, a<1};

THe problem is, that I get an empty set which is obviously wrong. So I somehow make an error when making the variables I want concrete with adding {a,b}. What do I do wrong? Or is there a better command for what I want to achieve? In this case I can solve the problem via hand, but I have more complex tranformations and mor ecomplex functions x(y), so thats why I ask for general help with my problem. 

Thank ypu in advance

Felix

Download QUESTI~1.MW

4 5 6 7 8 9 10 Last Page 6 of 43