Maple 2025 Questions and Posts

These are Posts and Questions associated with the product, Maple 2025

Hello everyone!
I have had an issue for the past weeks, where it seems like Maple has a problem identifying the correct units and also sometimes having an issue with defining a variable.

In the picture below you can see I have defined rho, m and tried to Solve V. I get m^3, which is fine but I cannot change the unit in the right bar (see picture).

I even tried to just take square root of my V to see if I could then change units. It seems like it thinks I'm playing with weight.
I even had 2 teachers trying to help me find a solution, without luck.

I have tried executing the whole document and also only bits of the document without luck.

Does anyone know this problem and has a solution?

Thanks in advance! 

- Jacob

For the derivation of the results that I need for my research, I use advanced calculus, special functions etc.

Consider a derivation of the form LHS = RHS1 = ... RHSn.

Suppose that I have a LaTeX file describing this derivation, with fine details of the derivation in notes written using pencil on paper. 

To check this derivation for errors, such as a wrong sign, I could retype LHS and RHSn into Maple and check for equality using symbolic algebra.

To provide a more detailed check of this derivation, I could type LHS, RHS1, ..., RHSn into Maple and check the sequence equalities LHS = RHS1, ..., RHS(n-1) = RHSn using symbolic algebra.

However, this is a laborious and, itself, an error-prone process.

Is there some way of submitting my LaTeX file (or its compiled version) and/or an image of my handwritten notes for checking by Maple, line-by-line, using symbolic algebra?

I'm not sure exactly when this started but maple on one of my linux machines won't print more than one row of a matrix. I get dots like this:

Note that interface(rtablesize) is [10,10]. This happens with both maple2024 and maple2025. 

On any of my other machines, maple works just fine. I have also tried deleting ~/.maple and ~/.maplesoft

Any idea why Maple dsolve can't find solution to this ode? From textbook

The strange thing, it solves if it asked for implicit solution. But the default, will give no solution.

Is this a defect? Should it not have returned the book solution automatically?   How is a user supposed to know the ode has a solution or not, if default call returns no solution?

restart;

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1877 and is the same as the version installed in this computer, created 2025, July 11, 19:24 hours Pacific Time.`

restart;

ode:=v(x)*diff(v(x),x) = g;
ic:=v(x__0) = v__0;
sol:=dsolve([ode,ic]);

v(x)*(diff(v(x), x)) = g

v(x__0) = v__0

restart;

ode:=v(x)*diff(v(x),x) = g;
ic:=v(x__0) = v__0;
sol:=dsolve([ode,ic],'implicit');

v(x)*(diff(v(x), x)) = g

v(x__0) = v__0

-2*g*x+v(x)^2+2*g*x__0-v__0^2 = 0

#why did not default call return this?
PDEtools:-Solve(sol,v(x))

v(x) = (2*g*x-2*g*x__0+v__0^2)^(1/2), v(x) = -(2*g*x-2*g*x__0+v__0^2)^(1/2)

Download dsolve_gives_no_solution_sept_2_2025.mw

The_Bohrs_Model_-_MaplePrimes.mw

Look at the equation (11) in the Maple's document. I would like to force Maple to let the variable "r" inside the squared root so to get the equation (12). Any idea of doing that?  Thank you in advance for your help.

(2500iw/(1+5iw) )+(200iw/1-10iw)+5 rationalize and simplify

I was surprised that Maple can't solve this first order ode which is exact ode.

I solved by hand and Maple says my solution is correct.

Any one can find why Maple failed to solve this and if older versions can solve it? Also tried implicit option, but that did not help.

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

restart;

ode:=diff(y(x),x) = (2*sin(2*x)-tan(y(x)))/x/sec(y(x))^2;

diff(y(x), x) = (2*sin(2*x)-tan(y(x)))/(x*sec(y(x))^2)

sol:=dsolve(ode);

mysol:=cos(2*x)+x*tan(y(x))=c__1;

cos(2*x)+x*tan(y(x)) = c__1

odetest(mysol,ode);

0

 

 

Download maple_solving_exact_ode_august_25_2025.mw

As we can see, RealDomain:-solve gives an incorrect solution to the following system: 

restart;

sys := `~`[diff](sqrt(2*a^2-8*a+10)+sqrt(b^2-6*b+10)+sqrt(2*a^2-2*a*b+b^2), [a, b]):

RealDomain:-solve(`~`[`=`](sys, 0), {a, b})

{a = 5/3, b = 5/2}, {a = a, b = 2*a/(a-1)}

(1)

plot(eval(sys, {max(2*5^(1/2), (2*a^2-8*a+10)^(1/2)+2^(1/2)*((a^2-4*a+5)/(a-1)^2)^(1/2)+2^(1/2)*(a^2*(a^2-4*a+5)/(a-1)^2)^(1/2)), min(2*5^(1/2), (2*a^2-8*a+10)^(1/2)+2^(1/2)*((a^2-4*a+5)/(a-1)^2)^(1/2)+2^(1/2)*(a^2*(a^2-4*a+5)/(a-1)^2)^(1/2))}[-1]), a = -infinity .. infinity)

 

extrema(sqrt(2*a^2-8*a+10)+sqrt(b^2-6*b+10)+sqrt(2*a^2-2*a*b+b^2), {}, {a, b})

{max(2*5^(1/2), (2*a^2-8*a+10)^(1/2)+2^(1/2)*((a^2-4*a+5)/(a-1)^2)^(1/2)+2^(1/2)*(a^2*(a^2-4*a+5)/(a-1)^2)^(1/2)), min(2*5^(1/2), (2*a^2-8*a+10)^(1/2)+2^(1/2)*((a^2-4*a+5)/(a-1)^2)^(1/2)+2^(1/2)*(a^2*(a^2-4*a+5)/(a-1)^2)^(1/2))}

(2)

Download solve_returns_an_unsatisfiable_real_solution.mw

This appears to be a bug; is it possible to fix it? 
Text: 

sys := diff~(sqrt(2*a^2 - 8*a + 10) + sqrt(b^2 - 6*b + 10) + sqrt(2*a^2 - 2*a*b + b^2), [a, b]):
RealDomain:-solve(sys =~ 0, {a, b});

THis is problem from textbook. Maple do not give solution. 

But when asked for implicit solution, it gives one.  Should it not have done this automatically?

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

ode:=y(x)*diff(y(x),x) = a;
ic:=y(0) = b;
sol:=dsolve([ode,ic]);

y(x)*(diff(y(x), x)) = a

y(0) = b

sol:=dsolve([ode,ic],'implicit')

-2*a*x+y(x)^2-b^2 = 0

 

 

Download why_no_solution_maple_2025_1.mw

We see now there are two solutions for y(x), since quadratic.

So why dsolve do not solve this and at least give implicit solution automatically? Should this be reported as defect?

Any idea why Maple simplifies 1+sin(x)^2 to 2-cos(x)^2?  Leaf count is larger also.

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

e1:=1+sin(x)^2;

1+sin(x)^2

e2:=simplify(e1)

-cos(x)^2+2

MmaTranslator:-Mma:-LeafCount(e1)

6

MmaTranslator:-Mma:-LeafCount(e2)

8

 

 

Download strange_simplification_august_20_2025.mw

Attached worksheet

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1877 and is the same as the version installed in this computer, created 2025, July 11, 19:24 hours Pacific Time.`

restart;

integrand:=1/2/x^(9/2)*2^(1/2)*Pi^(1/2)/(1/x)^(1/2)*cos(1/x);

(1/2)*2^(1/2)*Pi^(1/2)*cos(1/x)/(x^(9/2)*(1/x)^(1/2))

int(integrand,x)

Error, (in tools/eval_foo/do) too many levels of recursion

 

 

Download internal_error_on_int_august_20_2025_maple_2025_1.mw

Update

fyi, Here is yet another int() error Error, (in type/trig) too many levels of recursion in Maple 2025.1. (also reported to Maplesoft).

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1877 and is the same as the version installed in this computer, created 2025, July 11, 19:24 hours Pacific Time.`

restart;

integrand:=(a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2);

(a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)

int(integrand,x)

Error, (in type/trig) too many levels of recursion

int(integrand,x)

(1/6)*(-c*(-1+sin(f*x+e)))^(1/2)*((3/4)*B*sin(f*x+e)*tan(f*x+e)*cos(2*f*x+2*e)+A*sin(2*f*x+2*e)-(3/8)*tan(f*x+e)*(((4/5)*B*sin(f*x+e)+A)*sin(3*f*x+3*e)+(44/15)*B*sin(f*x+e)^2+(5*A-6*B)*sin(f*x+e)-(32/3)*A))*a*c^2*(a*(1+sin(f*x+e)))^(1/2)/f

restart;

integrand:=(a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2);
int(integrand,x)

(a+a*sin(f*x+e))^(3/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)

Error, (in type/trig) too many levels of recursion

 

 

Download another_int_error_too_many_levels_maple_2025_1.mw

I can't seem to find the "Stop Execution" symbol with the new Maple 2025.1 GUI.  Does anyone know where it went?

I installed a free trial of Maple 2025, but I can't seem to get the (simple) sample test.java script to run using OpenMaple. It compiles fine, but when I try to run it I get a Segmentation Fault error. I've ensured that the environmental variables, as described in the installation documentation, are given properly. The documentation/example in the installation refers to an old version of Maple, so I wondered if perhaps the free trial version does not have all of the updated components? I was hoping to test my project compatibility with OpenMaple before purchasing Maple.

My OS is Ubuntu 24.04, and I'm using Java 21. It would be nice to get everything running in IntelliJ eventually, but for now even trying to run in the terminal is problematic.

This post is written by a mathematics teacher who usually views Maple’s new initiatives from an educational perspective, and I’m well aware that others may see things differently. A single user might be delighted by a new feature that fits their personal workflow. An advanced user might not care if something requires a workaround.

There are also many preferences when it comes to how the interface should look. I often consider whether something will work well for our high school as a whole. We have students who are not very mathematically or scientifically inclined, and others who are. That’s why user-friendliness is essential. Some packages have been developed to make things easier for students. We try to avoid too many workarounds, since these often create problems for them.

Now, on to Maple 2025’s new interface:

When Microsoft introduced tabs and ribbons instead of menus and toolbars in Word many years ago, I personally thought it was a good idea. I can imagine it working well in Maple too — especially if the different elements are placed logically on the tabs, and frequently used functions are easy to access.

However, I just returned from summer vacation, ready for a new school year, only to discover something surprising: the Windows version comes with the new ribbon interface, while the Mac version still has the old one! For any teacher, this is a nightmare scenario: teaching a class where the Windows and Mac interfaces look completely different. Has Maplesoft ended up caught between two chairs here?

I’ve heard that a Mac version with tabs and ribbons is under development. But since it’s not ready yet, we can’t use it. On Windows, I also noticed a strange extra application called “Maple 2025 Screen Readers”. If you open it directly, you get an odd mix of modern 2D notation and old 1D Maple notation, which is simply unacceptable. If you instead click “Screen Reader Mode” in the top-right corner, it looks more normal. But does that mean it’s fully functional? If so, we might be able to combine this with the Mac version that still uses the old interface — and then switch next year to both Windows and Mac with tabs and ribbons. Still, I must say that Maplesoft is providing far too little information on this! Around 75% of our students use Macs, while only 25% use Windows.

Another issue: When saving a Maple file on a Windows computer, you’re forced into Maple’s own “Save As” window. I’ve previously suggested that it should instead open directly in Windows’ native File Explorer, which is far more powerful. In File Explorer, you can quickly use Quick Access shortcuts to save the file in the right folder. In Maple’s “Save As” window, however, it often takes 6–7 extra clicks to reach the desired location. For students who aren’t very tech-savvy, navigating through a deep folder tree can be a real challenge. Why doesn’t Maplesoft just use Windows’ own File Explorer, which students are already familiar with? Most other programs do. Perhaps someone can explain why Maplesoft insists on keeping their own limited “Save As” dialog.

Finally: I do believe that tabs and ribbons can be a good solution, but there’s still work to be done in placing items on appropriate tabs. For example, although I personally use the F5 keyboard shortcut to switch between Text, Non-executable Math, and Math mode, I know many students prefer to click on these options in Maple 2024. In the new interface, it now takes two or three clicks to do so. Since this is a function used very frequently, that’s a drawback. Couldn’t users be allowed to customize the Quick Access toolbar — via the Options menu — so these items can be placed there if needed?

 

 

I am trying to factor out I = sqrt(-1) from square roots in my Maple expression by using a substitution f2. However, after applying these substitutions to my final expression, there is no visible change. In addition, the term sqrt(2)/2 + sqrt(2)*I/2 also appear. How can I=sqrt(-1) can be properly factored out from the square roots?

restart

with(Student[Precalculus])

interface(showassumed = 0)

assume(x::real); assume(t::real); assume(lambda1::complex); assume(lambda2::complex); assume(a::real); assume(A__c::real); assume(B1::real); assume(B2::real); assume(delta1::real); assume(delta2::real); assume(`ω__0`::real); assume(g::real); assume(l__0::real)

expr := (0*A__c)*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t)))*(sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)*(((-sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))-sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))+exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))))*exp(-2*sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(l__0^2*(I*delta1-delta2)*t*`ω__0`+(1/2)*x))+exp(sqrt(-A__c^2*g+(delta1+I*delta2)^2)*(x+(2*I)*`ω__0`*l__0^2*(delta1+I*delta2)*t))*((sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))*sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2)))*exp((2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))-exp(-(2*(l__0^2*(I*delta1+delta2)*t*`ω__0`-(1/2)*x))*sqrt(-A__c^2*g+(delta1-I*delta2)^2))*(sqrt(delta1+I*delta2-sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2+sqrt(-A__c^2*g+(delta1-I*delta2)^2))+sqrt(delta1+I*delta2+sqrt(-A__c^2*g+(delta1+I*delta2)^2))*sqrt(-delta1+I*delta2-sqrt(-A__c^2*g+(delta1-I*delta2)^2)))))*(-delta1+I*delta2)*(delta1+I*delta2))

(2*I)*exp(-I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t)))*((-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2)))*delta2/(exp(I*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(((-(delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)-(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))+exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)))*exp(-2*(-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(l__0^2*(I*delta1-delta2)*t*omega__0+(1/2)*x))+exp((-A__c^2*g+(delta1+I*delta2)^2)^(1/2)*(x+(2*I)*omega__0*l__0^2*(delta1+I*delta2)*t))*(((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)*(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2))*exp(2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))-exp(-2*(l__0^2*(I*delta1+delta2)*t*omega__0-(1/2)*x)*(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))*((delta1+I*delta2-(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2+(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2)+(delta1+I*delta2+(-A__c^2*g+(delta1+I*delta2)^2)^(1/2))^(1/2)*(-delta1+I*delta2-(-A__c^2*g+(delta1-I*delta2)^2)^(1/2))^(1/2))))*(I*delta2-delta1)*(delta1+I*delta2))

(1)

`assuming`([simplify(combine(simplify(convert(combine(eval(expr, delta1 = 0)), trigh))))], [delta2 > g*A__c and g*A__c > 0])

(cos((2*A__c^2*g*l__0^2-1)*omega__0*t)-I*sin((2*A__c^2*g*l__0^2-1)*omega__0*t))*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/(delta2*(I*(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))+delta2))

(2)

f1 := simplify(convert(numer(%),exp))/factor(denom(%))

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*delta2+(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*(-A__c^2*g-delta2^2)^(1/2))*(-A__c^2*g-delta2^2)^(1/2))/((-(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*(-A__c^2*g-delta2^2)^(1/2))+I*delta2)*delta2)

(3)

sqrtterms := indets(%, sqrt)

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2)}

(4)

f2 := subs({sqrtterms[1] = sqrt(I)*sqrt(delta2-sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[2] = sqrt(I)*sqrt(delta2+sqrt(-A__c^2*g-delta2^2)/(I)), sqrtterms[3] = sqrt(I)*sqrt(A__c^2*g+delta2^2)})

{(I*delta2-(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (I*delta2+(-A__c^2*g-delta2^2)^(1/2))^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2), (-A__c^2*g-delta2^2)^(1/2) = ((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2)}

(5)

f3 := subs(f2, f1)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*(A__c^2*g+delta2^2)^(1/2))+I*delta2)*delta2)

(6)

f4 := subs({sqrt(A__c^2*g+delta2^2) = Z}, f3)

I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(7)

f4f := A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*`ω__0`*t)+f4

A__c*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)+I*exp(-(2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(-I*cosh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0-(1/2)*x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))^2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0-x)*((1/2)*2^(1/2)+((1/2)*I)*2^(1/2))*Z)+I*delta2)*delta2)

(8)

f4fnl := subs({I = -I, x = -x}, f4f)

A__c*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)-I*exp((2*I)*(A__c^2*g*l__0^2-1/2)*omega__0*t)*(I*cosh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*delta2+((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)+sinh(4*(l__0^2*delta2*t*omega__0+(1/2)*x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)/((-((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))^2*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh(2*(2*delta2*l__0^2*t*omega__0+x)*((1/2)*2^(1/2)-((1/2)*I)*2^(1/2))*Z)-I*delta2)*delta2)

(9)

Mdensity := simplify(f4f*f4fnl)

(1/4)*(2*(1-I*A__c*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)-2*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)*delta2+(1+I)*2^(1/2)*Z*sinh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)+(2*I)*A__c*delta2^2)*(2*(I*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*A__c-1)*delta2*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)+(1-I)*2^(1/2)*Z*sinh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-(2*I)*A__c*delta2^2+2*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2))/(delta2^2*((delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1+I)*(2*delta2*l__0^2*t*omega__0-x)*2^(1/2)*Z)-delta2)*((delta2-I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*(delta2+I*(-A__c^2*g-delta2^2)^(1/2))^(1/2)*cosh((1-I)*(2*delta2*l__0^2*t*omega__0+x)*2^(1/2)*Z)-delta2))

(10)

NULL

Download simplify.mw

5 6 7 8 9 10 11 Last Page 7 of 15