Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Dear all

I get error when solving Riccati equation. I want to get six different solution. 

ricatti_equation.mw

thank you for your help

I'm currently working on applying a specific method to solve a nonlinear equation. However, I've encountered a recurring issue: during the process, I often cannot determine certain parameters, which forces me to abandon the solution or switch to a different method. This has happened multiple times and is disrupting my goal of applying all intended methods consistently to a single equation.

In particular, I’m struggling to identify the correct parameters for U(ξ), which are essential for the solution. This challenge is not limited to one method I’ve faced similar problems in previous attempts, and I’m unsure why these parameters cannot be derived in some cases.

My question is: How can I manage this issue effectively? Is there a reliable way to predict or determine whether the necessary parameters will emerge correctly before fully applying a method?

I would greatly appreciate any insights or strategies you could share to help me handle this problem more systematically.

Thank you in advance for your support.

runing.mw

Some menu fonts have become smaller under Windows 10 for some reason.
There where no changes of the system settings nor system updates. A system restart did not restore to normal font size. This also on Maple 2024 and lower.

Any ideas what could have caused this and how to restore to normal?

That's from annother Windows 10 system.

 

How to solve these pde equations in maple to get the similar type graphs.

Ode equations we can solve directly but these equations are pde .

in the article they have solved the governing equations by series solution? 

can we solve these equations in maple also by series solution or any other method is there to solve these equations

I have used plot3d in Maple to generate a 3D plot, but I’m not sure how to export it in high resolution. I tried right-clicking to export the image directly, but the SVG output appeared garbled, and the JPEG version was too low in quality. I also attempted to export the plot using commands, but the resulting image still lacked sufficient resolution. I would like to ask how I can properly export a high-quality 3D figure from Maple.

Commands I have tried:

plotsetup(jpeg, plotoutput = "C:/Users/gfy/Desktop/data5151.jpg", plotoptions = `dpi=1200`);
print(ddd);
plotsetup(default);

I have a print format problem in Maple 2024.  For documents I print out, I use a special layout where all the contents are inside a table. The table is rigged to print on A4 paper. This is useful for my math notes. I havent done this for 18+ months. There appears to be a bug in Maple 2024. Only the first page is printed. Things work ok in Maple 2023. Maybe it is a setting difference or corruption in my install. Could somebody confirm this. Also if you can reproduce the problem could you let me know if it is in Maple 2025. I haven't upgraded yet.

 

2025-05-15_Q_page_print_formating.mw 
2025-05-15_Q_page_print_formating_M_2023.pdf
2025-05-15_Q_page_print_formating_M_2024.pdf

I asked similar question 5 years ago about Physics update but it was not possible to find this information

How-To-Find-What-Changed-In-Physics

I'd like to ask now again same about  SupportTools. Can one find out what update is actually included in new version?

Even if it is just 2-3 lines. It will be good if users had an idea what was fixed or improved in the new version.

Any update to software should inlcude such information. Not asking for details, just general information will be nice. Right now one does an update and have no idea at all what the new update fixed or improved which is not good.

May be such information can be displayed on screen after a user updates?

Yes , i can ..a procedure for thiis?

restart; with(plots); printf("Step 1: Declare l and b as free variables for the 3D plot.\n"); l := 'l'; b := 'b'; printf("Step 2: Set fixed values for remaining parameters.\n"); a := 1; c := 1; d := .2; f := 1; epsilon := 1; printf("Step 3: Define the 3D gain function G(l,b) with fixed a,c,d and variable l,b.\n"); G := proc (l, b) options operator, arrow; 2*Im(sqrt(-a^2*f*d-a*b+(1/2)*l^2-3*a+(1/2)*sqrt(-48*a^3*f*d+4*epsilon*l^3*c-24*a*epsilon*l*c+l^4+4*l^2*c^2-48*a^2*b-12*a*l^2+36*a^2))) end proc; printf("Step 4: Create a 3D surface plot of G(l,b).\n"); gainPlot := plot3d(G(l, b), l = -6 .. 4, b = .1 .. 1.2, labels = ["Wave number l", "Parameter b", "Gain G(l,b)"], title = "3D MI Gain Spectrum over (l, b)", shading = zhue, axes = boxed, grid = [60, 60]); printf("Step 5: Display the 3D surface plot.\n"); gainPlot

Step 1: Declare l and b as free variables for the 3D plot.
Step 2: Set fixed values for remaining parameters.
Step 3: Define the 3D gain function G(l,b) with fixed a,c,d and variable l,b.
Step 4: Create a 3D surface plot of G(l,b).
Step 5: Display the 3D surface plot.

 

 
 

 

Download can_we_plotthisin_3Dshapemprimes5-5-2025.mw

in here How we can seperate the coefficent of conjugate this conjugate sign how remove from my equation ?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, t)); declare(U(xi)); declare(V(xi)); declare(P(x, t)); declare(q(x, t))

u(x, t)*`will now be displayed as`*u

 

U(xi)*`will now be displayed as`*U

 

V(xi)*`will now be displayed as`*V

 

P(x, t)*`will now be displayed as`*P

 

q(x, t)*`will now be displayed as`*q

(2)

pde := I*(diff(u(x, t), t))+diff(u(x, t), `$`(x, 2))+abs(u(x, t))^2*u(x, t) = 0

I*(diff(u(x, t), t))+diff(diff(u(x, t), x), x)+abs(u(x, t))^2*u(x, t) = 0

(3)

S := u(x, t) = (sqrt(a)+P(x, t))*exp(I*a*t)

u(x, t) = (a^(1/2)+P(x, t))*exp(I*a*t)

(4)

S1 := conjugate(u(x, t)) = (sqrt(a)+conjugate(P(x, t)))*exp(-I*a*t)

conjugate(u(x, t)) = (a^(1/2)+conjugate(P(x, t)))*exp(-I*a*t)

(5)

Q := abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

abs(u(x, t))^2 = u(x, t)*conjugate(u(x, t))

(6)

F1 := expand(simplify(subs({S, S1}, rhs(Q))))

a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))+abs(P(x, t))^2

(7)

F2 := abs(u(x, t))^2 = remove(has, F1, abs(P(x, t))^2)

abs(u(x, t))^2 = a+a^(1/2)*P(x, t)+a^(1/2)*conjugate(P(x, t))

(8)

FF := collect(F2, sqrt(a))

abs(u(x, t))^2 = a+(P(x, t)+conjugate(P(x, t)))*a^(1/2)

(9)

F3 := abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*sqrt(a))*rhs(S)

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(10)

F4 := remove(has, F3, P(x, t)*conjugate(P(x, t)))

abs(u(x, t))^2*u(x, t) = (a+(P(x, t)+conjugate(P(x, t)))*a^(1/2))*(a^(1/2)+P(x, t))*exp(I*a*t)

(11)

expand(%)

abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(12)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, P(x, t) = T*P(x, t)))/T, T) end proc, expand(%))

() = (), abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a^(1/2)*P(x, t)^2+exp(I*a*t)*a*conjugate(P(x, t))+exp(I*a*t)*a^(1/2)*conjugate(P(x, t))*P(x, t)

(13)

F6 := abs(u(x, t))^2*u(x, t) = exp(I*a*t)*a^(3/2)+2*exp(I*a*t)*a*P(x, t)+exp(I*a*t)*a*conjugate(P(x, t))

abs(u(x, t))^2*u(x, t) = exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t))

(14)

subs({F6, S}, pde)

I*(diff((a^(1/2)+P(x, t))*exp(a*t*I), t))+diff(diff((a^(1/2)+P(x, t))*exp(a*t*I), x), x)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(15)

eval(%)

I*((diff(P(x, t), t))*exp(a*t*I)+I*(a^(1/2)+P(x, t))*a*exp(a*t*I))+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a^(3/2)+2*exp(a*t*I)*a*P(x, t)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(16)

expand(%)

I*(diff(P(x, t), t))*exp(a*t*I)+exp(a*t*I)*a*P(x, t)+(diff(diff(P(x, t), x), x))*exp(a*t*I)+exp(a*t*I)*a*conjugate(P(x, t)) = 0

(17)

expand(%/exp(I*a*t))

I*(diff(P(x, t), t))+a*P(x, t)+diff(diff(P(x, t), x), x)+a*conjugate(P(x, t)) = 0

(18)

PP := collect(%, a)

(P(x, t)+conjugate(P(x, t)))*a+I*(diff(P(x, t), t))+diff(diff(P(x, t), x), x) = 0

(19)

U1 := P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

P(x, t) = r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))

(20)

eval(subs(U1, PP))

(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0

(21)

simplify((r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))+conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t))))*a+I*(-I*r[1]*m*exp(I*(l*x-m*t))+I*r[2]*m*exp(-I*(l*x-m*t)))-r[1]*l^2*exp(I*(l*x-m*t))-r[2]*l^2*exp(-I*(l*x-m*t)) = 0)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(22)

J := eval(%)

conjugate(r[1]*exp(I*(l*x-m*t))+r[2]*exp(-I*(l*x-m*t)))*a+r[2]*(-l^2+a-m)*exp(-I*(l*x-m*t))+r[1]*exp(I*(l*x-m*t))*(-l^2+a+m) = 0

(23)

expand(%)

a*conjugate(r[1])*exp(I*conjugate(m)*conjugate(t))/exp(I*conjugate(l)*conjugate(x))+a*conjugate(r[2])*exp(I*conjugate(l)*conjugate(x))/exp(I*conjugate(m)*conjugate(t))-r[2]*exp(I*m*t)*l^2/exp(I*l*x)+r[2]*exp(I*m*t)*a/exp(I*l*x)-r[2]*exp(I*m*t)*m/exp(I*l*x)-r[1]*exp(I*l*x)*l^2/exp(I*m*t)+r[1]*exp(I*l*x)*a/exp(I*m*t)+r[1]*exp(I*l*x)*m/exp(I*m*t) = 0

(24)

indets(%)

{a, l, m, t, x, r[1], r[2], exp(I*l*x), exp(I*m*t), exp(I*conjugate(l)*conjugate(x)), exp(I*conjugate(m)*conjugate(t)), conjugate(l), conjugate(m), conjugate(t), conjugate(x), conjugate(r[1]), conjugate(r[2])}

(25)

subs({exp(-I*(l*x-m*t)) = Y, exp(I*(l*x-m*t)) = X}, J)

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(26)

collect(%, {X, Y})

conjugate(X*r[1]+Y*r[2])*a+r[2]*(-l^2+a-m)*Y+r[1]*X*(-l^2+a+m) = 0

(27)

Download conjugate.mw

I am currently working with an ordinary differential equation (ODE) that I find difficult to express and solve accurately. In this ODE, the symbol f represents an exponential function rather than a typical variable, which adds to the confusion. Although I have followed the format used in related research papers, the results I obtain are not satisfactory.

Since this type of ODE is new and somewhat unfamiliar to me, I would greatly appreciate your guidance in:

  1. Properly formulating the ODE.

  2. Understanding the role of f in the context of exponential functions.

  3. Finding the correct and complete solutions.

  4. Learning how to clearly present each solution step by step.

Thank you in advance for your support.

AA.mw

Manually factoring each equation in this system one by one is time-consuming and inefficient. Is there a way to automate the factoring of expressions into two multiplicative terms—some of which may be single-term factors—using code?

restart

with(PDEtools)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

G1 := 5*lambda^2*alpha[1]^4*alpha[0]*a[4]+lambda^2*alpha[1]^4*a[3]-10*lambda*alpha[1]^2*alpha[0]^3*a[4]+lambda*k^2*a[1]*alpha[1]^2-6*lambda*alpha[1]^2*alpha[0]^2*a[3]+alpha[0]^5*a[4]-k^2*a[1]*alpha[0]^2-3*lambda*alpha[1]^2*alpha[0]*a[2]+alpha[0]^4*a[3]+lambda*w*alpha[1]^2+alpha[0]^3*a[2]-w*alpha[0]^2+((lambda^2*a[4]*alpha[1]^5-10*lambda*a[4]*alpha[0]^2*alpha[1]^3-4*lambda*a[3]*alpha[0]*alpha[1]^3+5*a[4]*alpha[0]^4*alpha[1]-2*k^2*a[1]*alpha[0]*alpha[1]-lambda*a[2]*alpha[1]^3+4*a[3]*alpha[0]^3*alpha[1]+3*a[2]*alpha[0]^2*alpha[1]-2*w*alpha[0]*alpha[1])*(diff(G(xi), xi))+lambda^2*beta[0]*a[5]*alpha[1]^2-4*mu*lambda*alpha[1]^4*a[3]+5*lambda^2*beta[0]*alpha[1]^4*a[4]-3*lambda*beta[0]*alpha[1]^2*a[2]-lambda*beta[0]*a[5]*alpha[0]^2-(1/2)*lambda*a[1]*alpha[0]*beta[0]-2*k^2*a[1]*alpha[0]*beta[0]+12*mu*alpha[1]^2*alpha[0]^2*a[3]+6*mu*alpha[1]^2*alpha[0]*a[2]-2*mu*k^2*a[1]*alpha[1]^2-(1/2)*mu*lambda*alpha[1]^2*a[1]+20*mu*alpha[1]^2*alpha[0]^3*a[4]-20*mu*lambda*alpha[1]^4*alpha[0]*a[4]-2*mu*lambda*alpha[1]^2*a[5]*alpha[0]-30*lambda*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-12*lambda*beta[0]*alpha[1]^2*alpha[0]*a[3]-2*w*alpha[0]*beta[0]+5*beta[0]*alpha[0]^4*a[4]+4*beta[0]*alpha[0]^3*a[3]+3*beta[0]*alpha[0]^2*a[2]-2*mu*w*alpha[1]^2)/G(xi)+((1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-k^2*a[1]*beta[0]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-9*mu^2*alpha[1]^2*a[1]*(1/4)-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]-(1/4)*lambda*beta[0]^2*a[1]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-20*mu*lambda*beta[0]*alpha[1]^4*a[4]-7*mu*lambda*beta[0]*a[5]*alpha[1]^2+(2*mu*alpha[1]^3*a[2]-2*w*alpha[1]*beta[0]-4*lambda*beta[0]*alpha[1]^3*a[3]+8*mu*alpha[1]^3*alpha[0]*a[3]+mu*alpha[1]*a[5]*alpha[0]^2+(1/2)*mu*alpha[1]*alpha[0]*a[1]+20*mu*alpha[1]^3*alpha[0]^2*a[4]-4*mu*lambda*alpha[1]^5*a[4]-mu*lambda*alpha[1]^3*a[5]+20*beta[0]*alpha[1]*alpha[0]^3*a[4]+12*beta[0]*alpha[1]*alpha[0]^2*a[3]+6*beta[0]*alpha[1]*alpha[0]*a[2]-2*k^2*a[1]*alpha[1]*beta[0]-(1/2)*lambda*beta[0]*alpha[1]*a[1]-20*lambda*beta[0]*alpha[1]^3*alpha[0]*a[4]-2*lambda*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))-w*beta[0]^2)/G(xi)^2+(((lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^3*a[2]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^5*a[4]+(2*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^3*a[5]+3*beta[0]^2*alpha[1]*a[2]+3*mu*beta[0]*alpha[1]*a[1]*(1/2)+8*mu*beta[0]*alpha[1]^3*a[3]-2*lambda*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]*alpha[0]*a[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*lambda*a[5]+30*beta[0]^2*alpha[1]*alpha[0]^2*a[4]+12*beta[0]^2*alpha[1]*alpha[0]*a[3]-6*mu^2*alpha[1]^3*a[5]-10*lambda*beta[0]^2*alpha[1]^3*a[4]+40*mu*beta[0]*alpha[1]^3*alpha[0]*a[4]+8*mu*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*a[3]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*alpha[1]^4*a[4]+(6*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*a[5]*alpha[1]^2-10*lambda*beta[0]^3*alpha[1]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[1]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*a[2]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*a[1]*alpha[0]*beta[0]+12*mu*beta[0]^2*alpha[1]^2*a[3]+6*mu*beta[0]^2*a[5]*alpha[0]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[5]*alpha[0]+beta[0]^3*a[2]-14*mu^2*beta[0]*a[5]*alpha[1]^2+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*lambda*a[5]*alpha[1]^2+(12*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+mu*beta[0]^2*a[1]-lambda*beta[0]^3*a[5]+10*beta[0]^3*alpha[0]^2*a[4]+4*beta[0]^3*alpha[0]*a[3])/G(xi)^3+((4*beta[0]^3*alpha[1]*a[3]+(1/2)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]*a[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*a[3]+7*mu*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^5*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^3*a[5]+20*beta[0]^3*alpha[1]*alpha[0]*a[4]+20*mu*beta[0]^2*alpha[1]^3*a[4]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*alpha[0]*a[4]+(8*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[1]*alpha[0])*(diff(G(xi), xi))+20*mu*beta[0]^3*alpha[1]^2*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[0]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*alpha[0]*a[4]+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[5]*alpha[0]+(17*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*beta[0]*a[5]*alpha[1]^2+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*beta[0]*alpha[1]^4*a[4]+beta[0]^4*a[3]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+(1/4)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[1]+3*mu*beta[0]^3*a[5]+5*beta[0]^4*alpha[0]*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*a[3]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[1]*(1/4))/G(xi)^4+(((lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^5*a[4]+2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^3*a[5]+5*beta[0]^4*alpha[1]*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^3*a[4])*(diff(G(xi), xi))+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*a[5]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*alpha[1]^2*a[4]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*alpha[1]^4*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*a[5]*alpha[1]^2+beta[0]^5*a[4])/G(xi)^5 = 0

indets(G1)

{k, lambda, mu, w, xi, B[1], B[2], a[1], a[2], a[3], a[4], a[5], alpha[0], alpha[1], beta[0], G(xi), diff(G(xi), xi)}

(2)

``

(3)

eq0 := 5*lambda^2*a[4]*alpha[0]*alpha[1]^4+lambda^2*a[3]*alpha[1]^4-10*lambda*a[4]*alpha[0]^3*alpha[1]^2+k^2*lambda*a[1]*alpha[1]^2-6*lambda*a[3]*alpha[0]^2*alpha[1]^2+a[4]*alpha[0]^5-k^2*a[1]*alpha[0]^2-3*lambda*a[2]*alpha[0]*alpha[1]^2+a[3]*alpha[0]^4+lambda*w*alpha[1]^2+a[2]*alpha[0]^3-w*alpha[0]^2 = 0

``

eq1 := lambda^2*a[4]*alpha[1]^5-10*lambda*a[4]*alpha[0]^2*alpha[1]^3-4*lambda*a[3]*alpha[0]*alpha[1]^3+5*a[4]*alpha[0]^4*alpha[1]-2*k^2*a[1]*alpha[0]*alpha[1]-lambda*a[2]*alpha[1]^3+4*a[3]*alpha[0]^3*alpha[1]+3*a[2]*alpha[0]^2*alpha[1]-2*w*alpha[0]*alpha[1] = 0

eq2 := lambda^2*beta[0]*a[5]*alpha[1]^2+6*mu*alpha[1]^2*alpha[0]*a[2]-2*mu*k^2*a[1]*alpha[1]^2-(1/2)*mu*alpha[1]^2*lambda*a[1]+20*mu*alpha[1]^2*alpha[0]^3*a[4]+12*mu*alpha[1]^2*alpha[0]^2*a[3]-(1/2)*lambda*a[1]*alpha[0]*beta[0]-2*k^2*a[1]*alpha[0]*beta[0]-3*lambda*beta[0]*alpha[1]^2*a[2]-lambda*beta[0]*a[5]*alpha[0]^2+5*lambda^2*beta[0]*alpha[1]^4*a[4]-4*mu*lambda*alpha[1]^4*a[3]-2*mu*w*alpha[1]^2+5*beta[0]*alpha[0]^4*a[4]+4*beta[0]*alpha[0]^3*a[3]+3*beta[0]*alpha[0]^2*a[2]-2*w*alpha[0]*beta[0]-20*mu*lambda*alpha[1]^4*alpha[0]*a[4]-2*mu*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-12*lambda*beta[0]*alpha[1]^2*alpha[0]*a[3] = 0

NULL

eq3 := (1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]-9*mu^2*alpha[1]^2*a[1]*(1/4)-w*beta[0]^2+3*beta[0]^2*alpha[0]*a[2]-(1/4)*lambda*beta[0]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]+3*mu*beta[0]*a[5]*alpha[0]^2-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4] = 0

eq4 := 2*mu*alpha[1]^3*a[2]-2*w*alpha[1]*beta[0]-20*lambda*beta[0]*alpha[1]^3*alpha[0]*a[4]-2*lambda*beta[0]*a[5]*alpha[1]*alpha[0]-2*k^2*a[1]*alpha[1]*beta[0]+20*beta[0]*alpha[1]*alpha[0]^3*a[4]+12*beta[0]*alpha[1]*alpha[0]^2*a[3]+6*beta[0]*alpha[1]*alpha[0]*a[2]+8*mu*alpha[1]^3*alpha[0]*a[3]+mu*alpha[1]*a[5]*alpha[0]^2+(1/2)*mu*alpha[1]*alpha[0]*a[1]-4*lambda*beta[0]*alpha[1]^3*a[3]-lambda*alpha[1]^3*mu*a[5]-(1/2)*lambda*beta[0]*alpha[1]*a[1]+20*mu*alpha[1]^3*alpha[0]^2*a[4]-4*mu*lambda*alpha[1]^5*a[4] = 0

eq5 := -6*mu^2*alpha[1]^3*a[5]+(2*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^3*a[5]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^3*a[2]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^5*a[4]+3*beta[0]^2*alpha[1]*a[2]+40*mu*beta[0]*alpha[1]^3*alpha[0]*a[4]+8*mu*beta[0]*a[5]*alpha[1]*alpha[0]+30*beta[0]^2*alpha[1]*alpha[0]^2*a[4]+12*beta[0]^2*alpha[1]*alpha[0]*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]*a[5]*alpha[0]^2+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]*alpha[0]*a[1]+8*mu*beta[0]*alpha[1]^3*a[3]+3*mu*beta[0]*alpha[1]*a[1]*(1/2)-10*lambda*beta[0]^2*alpha[1]^3*a[4]-2*lambda*beta[0]^2*a[5]*alpha[1]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*alpha[0]^2*a[4]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*lambda*a[5] = 0

eq6 := -14*mu^2*beta[0]*a[5]*alpha[1]^2+beta[0]^3*a[2]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*a[1]*alpha[0]*beta[0]+12*mu*beta[0]^2*alpha[1]^2*a[3]+6*mu*beta[0]^2*a[5]*alpha[0]-10*lambda*beta[0]^3*alpha[1]^2*a[4]+(6*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*a[5]*alpha[1]^2+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*a[2]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[0]^2+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*beta[0]*alpha[1]^4*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*a[3]+(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[1]+10*beta[0]^3*alpha[0]^2*a[4]+4*beta[0]^3*alpha[0]*a[3]-lambda*beta[0]^3*a[5]+mu*beta[0]^2*a[1]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^4*alpha[0]*a[4]+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^2*a[5]*alpha[0]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*lambda*a[5]*alpha[1]^2+(12*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]^2*alpha[1]^2*alpha[0]*a[4] = 0

eq7 := 4*beta[0]^3*alpha[1]*a[3]+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*alpha[0]*a[4]+(8*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*a[5]*alpha[1]*alpha[0]+20*beta[0]^3*alpha[1]*alpha[0]*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]^3*a[3]+(5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^3*mu*a[5]+(1/2)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*alpha[1]*a[1]+20*mu*beta[0]^2*alpha[1]^3*a[4]+7*mu*beta[0]^2*a[5]*alpha[1]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*mu*alpha[1]^5*a[4] = 0

eq8 := 4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[5]*alpha[0]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*alpha[0]*a[4]+beta[0]^4*a[3]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*a[3]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[0]+20*mu*beta[0]^3*alpha[1]^2*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^4*a[3]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^2*a[1]*(1/4)+5*beta[0]^4*alpha[0]*a[4]+3*mu*beta[0]^3*a[5]+(1/4)*(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[1]+(30*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^2*alpha[0]*a[4]+(17*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*mu*a[5]*alpha[1]^2+(20*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]*mu*alpha[1]^4*a[4] = 0

eq9 := (10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*alpha[1]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^2*a[5]*alpha[1]+5*beta[0]^4*alpha[1]*a[4]+(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^5*a[4]+2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*alpha[1]^3*a[5] = 0

eq10 := (2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*a[5]+beta[0]^5*a[4]+5*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*alpha[1]^4*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)^2*beta[0]*a[5]*alpha[1]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*beta[0]^3*alpha[1]^2*a[4] = 0

 

with(LargeExpressions)

COEFFS := solve({eq0, eq1, eq10, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9}, {w, a[1], a[2], alpha[0], alpha[1], beta[0]})

Download by_hand!.mw

This question is actually on behalf of a colleague who works with fuzzy mathematics. He typically computes things like fuzzy derivatives by hand, including for specific functions such as "function 14" (though I'm not familiar with the specific form of that function). He’s interested in whether Maple can symbolically and numerically handle tasks in fuzzy calculus — especially taking and plotting fuzzy derivatives.

I’m not experienced with fuzzy systems myself, but I’d like to recommend Maple to him if it supports these features. So my main questions are:

  1. Can Maple compute and plot fuzzy functions and their derivatives?

  2. Does Maple have built-in support or packages for fuzzy arithmetic or fuzzy calculus?

  3. If not natively, is there a workaround or external library that integrates with Maple to do this?

I’d really appreciate any insights or examples. It seems like a missed opportunity for my friend to be doing all this manually when such software might already handle it.

Thanks in advance!

 

This happens in Maple 2025, but when I checked Maple 2024.2, same thing happen.

To reproduce, I typed ?coeff in the worksheet. Now the help page for coeff comes up OK. On the right, there are some links below "see also". 

Clicking on the one that says PolynomialTools[CoefficientVector] and now an EMPTY page opens up.

Also, typing ?PolynomialTools in worksheet, opens the help page for Overview of the PolynomialTools Package. Now clicking on CoefficientList link, opens an EMPTY page. Same when clicking on CoefficientVector, an EMPTY page !

Have not checked all the links in the help page, but why are some commands have empty help pages?

 

 

I need to create a slider plot for A10, A11, and A12 by varying the parameters theta, Pu, and a.
I have a syntax ready — could you suggest modifications to make it work correctly and generate the plot?

Additionally, is it possible to compute the values of A13 and A14 by substituting the obtained A10, A11, and A12 values for each combination of theta, Pu, and a from the slider plot?

Sheet attached: Slider_Q.mw

Dear all 
I have a double integral, i want to compute this integral and verify if the pproposed solution verify the proposed equation or not. 
I can modify the right hand side of my equation or the exact solution, so that my equation has an exact solution with simple form of right hand side. 

exact_solution.mw

Thank you for your help 

1 2 3 4 5 6 7 Last Page 2 of 2215