Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I have this problem with this system of equations, when I solve the 13x13 system it does not give me any solution, neither giving seed values ​​nor placing full digits. The exercise is solved and I tried to assume close values ​​and it doesn't work for me, it leaves everything expressed with the fsolve command.

Download p1.mw

Maple formats output depending on typesetting options "extened" and "standard" for the GUI (or interface). An example taken from

restart;
ts_standard:=proc(k::anything)
     interface(typesetting=standard):
     print(k);
     interface(typesetting=extended): 
     NULL;
end proc:
k:=3/8*ln(55/52)+sin(x)+3/4*exp(x);
                    3   /55\            3       
               k := - ln|--| + sin(x) + - exp(x)
                    8   \52/            4       

ts_standard(k);
                               

Why is the input two times returned and why one time as a list?
Somehow the first interface statement is responsible for that.

I am only interested in the reformated input inside the list.
Is it possible to fix the code?

Other observation with typesetting=standard:

restart;
interface(typesetting=standard);
expr:=cos(x)^2;
((x->x)=combine[trig])(expr);
                      

((x->x)=combine[trig])(expr);#subsequent call
                          2   1            1
                    cos(x)  = - cos(2 x) + -
                              2            2

(with Maple 2024.1 this only accurs in Math-1D)
but

restart;
expr:=cos(x)^2;
interface(typesetting=standard);
((x->x)=combine[trig])(expr);
                                      2
                        expr := cos(x) 

                            extended

                          2   1            1
                    cos(x)  = - cos(2 x) + -
                              2            2

GUI state after interupting with :

After switching to untitled 17 and back to test_timeout:

Sometimes it is necessary to switch back and forth twice.

Does this mean that the kernel did not receive the interupt?

Hello Everyone 

I created a file to sum up 5 vectors and display them in 3d space. (see below)

I would like to optimize my input so that I input the total length of the vector and the angle in the x-y plane and the angle in the x-z plane. 

At the top of the document there is an idea from a different pots how to do it with 2d vectors but I can't get it to work with 3d vectors. 

Any ideas?

Thanks in advance!

3d_vector.mw

For the legend in the image below I would have expected a black image and not a white

 

 

'odeadvisor' suggests isolating y(x) from the equation as a first step, y=G(x,y'(x)), then apply the method of 'patterns'. For the first step, y(x) = (9/4)*[(y'(x))^2]/{[int(f(x),x)]^5} is what I found but, could take it no further. Nevertheless, Maple finds an intrinsic solution of the form, (3/4)*y(x)^(4/3) +(2/3)*int(sqrt(y(x)*f(x))^(-5/3) + _C1 =0, from which an explicit solution can be obtained. If anyone can supply the steps leading to the Maple solution - that would be great.

Dear all
If you have the following two maple package, kindly share it with me.
wkptest: For the symbolic computation of Painleve test for nonlinear PDEs.
ONEOptimal:-  Maple Package for obtaining Optimal System

Thanking you in advance
Debendra

Hi all guys! I am doing the error analysis but now I meet one question: how to get the explict solution of eq11? If it is complex, I just wanna the real part. Welcome all guys discussion!

Download TFETDRKN(5)_two_eigenvalues_calculation.mw

Please write the code for 2nd Order Gausian Smoothing of the curve with the following data:

X := Vector[row](781, [0, 0.000115771, 0.000231541, 0.000347312, 0.000463082, 0.000578853, 0.000694623, 0.000810394, 0.000926164, 0.001041935, 0.001157705, 0.001273476, 0.001389246, 0.001505017, 0.001620787, 0.001736558, 0.001852328, 0.001968099, 0.002083869, 0.00219964, 0.00231541, 0.002431181, 0.002546952, 0.002662722, 0.002778493, 0.002894263, 0.003010034, 0.003125804, 0.003241575, 0.003357345, 0.003473116, 0.003588886, 0.003704657, 0.003820427, 0.003936198, 0.004051968, 0.004167739, 0.004283509, 0.00439928, 0.00451505, 0.004630821, 0.004746591, 0.004862362, 0.004978132, 0.005093903, 0.005209674, 0.005325444, 0.005441215, 0.005556985, 0.005672756, 0.005788526, 0.005904297, 0.006020067, 0.006135838, 0.006251608, 0.006367379, 0.006483149, 0.013008131, 0.013123901, 0.013239672, 0.013355442, 0.013471213, 0.013586983, 0.013702754, 0.013818524, 0.013934295, 0.014050065, 0.014165836, 0.014281606, 0.014397377, 0.014513148, 0.014628918, 0.014744689, 0.014860459, 0.01497623, 0.015092, 0.015207771, 0.015323541, 0.015439312, 0.015555082, 0.015670853, 0.015786623, 0.015902394, 0.016018164, 0.016133935, 0.016249705, 0.016365476, 0.016481246, 0.016597017, 0.016712787, 0.016828558, 0.023353539, 0.02346931, 0.02358508, 0.023700851, 0.023816621, 0.023932392, 0.024048163, 0.024163933, 0.024279704, 0.024395474, 0.024511245, 0.024627015, 0.024742786, 0.024858556, 0.024974327, 0.025090097, 0.031615079, 0.031730849, 0.03184662, 0.03196239, 0.032078161, 0.032193931, 0.032309702, 0.032425472, 0.032541243, 0.032657013, 0.032772784, 0.032888554, 0.033004325, 0.033120095, 0.039645077, 0.039760847, 0.039876618, 0.039992388, 0.040108159, 0.040223929, 0.0403397, 0.040455471, 0.040571241, 0.047096222, 0.047211993, 0.047327764, 0.047443534, 0.047559305, 0.047675075, 0.047790846, 0.047906616, 0.054431598, 0.054547368, 0.054663139, 0.054778909, 0.05489468, 0.05501045, 0.055126221, 0.055241991, 0.055357762, 0.061882743, 0.061998514, 0.062114284, 0.062230055, 0.062345825, 0.062461596, 0.062577366, 0.062693137, 0.069218118, 0.069333889, 0.069449659, 0.06956543, 0.0696812, 0.069796971, 0.076321952, 0.076437723, 0.076553493, 0.076669264, 0.076785034, 0.076900805, 0.077016575, 0.077132346, 0.077248116, 0.083773098, 0.083888868, 0.084004639, 0.084120409, 0.08423618, 0.08435195, 0.090876932, 0.090992702, 0.091108473, 0.091224243, 0.091340014, 0.097864995, 0.097980766, 0.098096536, 0.098212307, 0.098328077, 0.098443848, 0.098559619, 0.1050846, 0.10520037, 0.105316141, 0.105431912, 0.105547682, 0.105663453, 0.105779223, 0.112304205, 0.112419975, 0.112535746, 0.112651516, 0.112767287, 0.112883057, 0.119408039, 0.119523809, 0.11963958, 0.11975535, 0.119871121, 0.119986891, 0.120102662, 0.126627643, 0.126743414, 0.126859184, 0.126974955, 0.127090725, 0.127206496, 0.133731477, 0.133847248, 0.133963018, 0.134078789, 0.134194559, 0.13431033, 0.1344261, 0.140951082, 0.141066852, 0.141182623, 0.141298393, 0.141414164, 0.141529934, 0.148054916, 0.148170686, 0.148286457, 0.148402227, 0.148517998, 0.148633768, 0.148749539, 0.15527452, 0.155390291, 0.155506061, 0.155621832, 0.155737602, 0.155853373, 0.162378354, 0.162494125, 0.162609895, 0.162725666, 0.162841436, 0.162957207, 0.163072977, 0.169597959, 0.169713729, 0.1698295, 0.16994527, 0.170061041, 0.170176811, 0.176701793, 0.176817563, 0.176933334, 0.177049104, 0.177164875, 0.177280646, 0.183805627, 0.183921397, 0.184037168, 0.184152938, 0.184268709, 0.18438448, 0.18450025, 0.191025231, 0.191141002, 0.191256773, 0.191372543, 0.191488314, 0.191604084, 0.198129066, 0.198244836, 0.198360607, 0.198476377, 0.198592148, 0.198707918, 0.2052329, 0.20534867, 0.205464441, 0.205580211, 0.205695982, 0.205811752, 0.212336734, 0.212452504, 0.212568275, 0.212684045, 0.212799816, 0.212915586, 0.219440568, 0.219556338, 0.219672109, 0.219787879, 0.21990365, 0.22001942, 0.220135191, 0.226660172, 0.226775943, 0.226891713, 0.227007484, 0.227123254, 0.227239025, 0.233764006, 0.233879777, 0.233995547, 0.234111318, 0.234227088, 0.234342859, 0.24086784, 0.240983611, 0.241099381, 0.241215152, 0.241330922, 0.247855904, 0.247971674, 0.248087445, 0.248203215, 0.248318986, 0.248434756, 0.254959738, 0.255075508, 0.255191279, 0.255307049, 0.25542282, 0.25553859, 0.262063572, 0.262179342, 0.262295113, 0.262410883, 0.262526654, 0.269051635, 0.269167406, 0.269283176, 0.269398947, 0.269514717, 0.276039699, 0.276155469, 0.27627124, 0.27638701, 0.276502781, 0.283027762, 0.283143533, 0.283259303, 0.283375074, 0.283490844, 0.290015826, 0.290131596, 0.290247367, 0.290363137, 0.290478908, 0.290594678, 0.29711966, 0.29723543, 0.297351201, 0.297466971, 0.297582742, 0.304107723, 0.304223494, 0.304339264, 0.304455035, 0.304570805, 0.304686576, 0.311211557, 0.311327328, 0.311443098, 0.311558869, 0.31167464, 0.31179041, 0.318315391, 0.318431162, 0.318546933, 0.318662703, 0.318778474, 0.318894244, 0.325419225, 0.325534996, 0.325650767, 0.325766537, 0.325882308, 0.325998078, 0.33252306, 0.33263883, 0.332754601, 0.332870371, 0.332986142, 0.339511123, 0.339626894, 0.339742664, 0.339858435, 0.339974205, 0.340089976, 0.346614957, 0.346730728, 0.346846498, 0.346962269, 0.347078039, 0.34719381, 0.353718791, 0.353834562, 0.353950332, 0.354066103, 0.354181873, 0.354297644, 0.360822625, 0.360938396, 0.361054166, 0.361169937, 0.361285707, 0.367810689, 0.367926459, 0.36804223, 0.368158, 0.368273771, 0.368389541, 0.374914523, 0.375030293, 0.375146064, 0.375261834, 0.375377605, 0.381902586, 0.382018357, 0.382134127, 0.382249898, 0.382365668, 0.38889065, 0.38900642, 0.389122191, 0.389237961, 0.389353732, 0.389469502, 0.395994484, 0.396110254, 0.396226025, 0.396341795, 0.402866777, 0.402982547, 0.403098318, 0.403214088, 0.403329859, 0.40985484, 0.409970611, 0.410086381, 0.410202152, 0.410317922, 0.416842904, 0.416958674, 0.417074445, 0.417190215, 0.423715197, 0.423830967, 0.423946738, 0.424062508, 0.43058749, 0.43070326, 0.430819031, 0.430934801, 0.431050572, 0.437575553, 0.437691324, 0.437807094, 0.437922865, 0.444447846, 0.444563617, 0.444679387, 0.444795158, 0.451320139, 0.45143591, 0.45155168, 0.451667451, 0.458192432, 0.458308203, 0.458423973, 0.458539744, 0.465064725, 0.465180496, 0.465296266, 0.465412037, 0.471937018, 0.472052789, 0.472168559, 0.47228433, 0.478809311, 0.478925082, 0.479040852, 0.479156623, 0.485681604, 0.485797375, 0.485913145, 0.486028916, 0.492553897, 0.492669668, 0.492785438, 0.492901209, 0.49942619, 0.499541961, 0.499657731, 0.506182713, 0.506298483, 0.506414254, 0.506530024, 0.513055006, 0.513170776, 0.513286547, 0.513402317, 0.519927299, 0.520043069, 0.52015884, 0.526683821, 0.526799592, 0.526915362, 0.533440343, 0.533556114, 0.533671885, 0.533787655, 0.540312636, 0.540428407, 0.540544178, 0.547069159, 0.547184929, 0.5473007, 0.553825681, 0.553941452, 0.554057222, 0.560582204, 0.560697974, 0.560813745, 0.567338726, 0.567454497, 0.567570267, 0.574095249, 0.574211019, 0.57432679, 0.580851771, 0.580967542, 0.581083312, 0.587608294, 0.587724064, 0.587839835, 0.594364816, 0.594480587, 0.594596357, 0.601121339, 0.601237109, 0.60135288, 0.607877861, 0.607993632, 0.608109402, 0.614634384, 0.614750154, 0.614865925, 0.621390906, 0.621506677, 0.628031658, 0.628147428, 0.628263199, 0.63478818, 0.634903951, 0.635019721, 0.641544703, 0.641660473, 0.648185455, 0.648301225, 0.648416996, 0.654941977, 0.655057748, 0.655173518, 0.6616985, 0.66181427, 0.668339252, 0.668455022, 0.668570793, 0.675095774, 0.675211545, 0.681736526, 0.681852297, 0.681968067, 0.688493049, 0.688608819, 0.695133801, 0.695249571, 0.695365342, 0.701890323, 0.702006094, 0.708531075, 0.708646845, 0.715171827, 0.715287597, 0.715403368, 0.721928349, 0.72204412, 0.728569101, 0.728684872, 0.735209853, 0.735325624, 0.741966376, 0.748607128, 0.75524788, 0.761888631, 0.768529383, 0.775170135, 0.781695117, 0.788335869, 0.794976621, 0.801501602, 0.808142354, 0.814783106, 0.821423858, 0.827948839, 0.834589591, 0.841230343, 0.847871095, 0.854511847, 0.861152599, 0.867793351, 0.874318332, 0.880959084, 0.887599836, 0.894240588, 0.90076557, 0.907406322, 0.913931303, 0.920572055, 0.927097036, 0.933622018, 0.94026277, 0.946787751, 0.953312733, 0.959953484, 0.966478466, 0.973119218, 0.97975997, 0.986284951, 0.992925703, 0.999450685, 1.006091437, 1.012732188, 1.019488711, 1.026129463, 1.032885985, 1.039526737, 1.046051719, 1.0525767, 1.059101682, 1.065626663, 1.072151644, 1.078676626, 1.091610818, 1.085201607, 1.0981358, 1.111069992, 1.104660781, 1.117594973, 1.124119955, 1.137054147, 1.130644936, 1.143579128, 1.15010411, 1.163038302, 1.156629091, 1.169563284, 1.176088265, 1.182613246, 1.195547439, 1.189138228, 1.20207242, 1.208597402, 1.221531594, 1.215122383, 1.228056575, 1.240990768, 1.234581557, 1.25392496, 1.247515749, 1.266859152, 1.260449941, 1.279793345, 1.273384134, 1.292727537, 1.286318326, 1.31207094, 1.305661729, 1.299252518, 1.331414343, 1.325005132, 1.318595921, 1.350757746, 1.344348536, 1.337939325, 1.37010115, 1.363691939, 1.357282728, 1.389444553, 1.383035342, 1.376626131, 1.415197167, 1.408787956, 1.402378745, 1.395969534, 1.43454057, 1.428131359, 1.421722148, 1.453883973, 1.447474762, 1.441065552, 1.466818166, 1.460408955, 1.486161569, 1.479752358, 1.473343147, 1.499095761, 1.49268655, 1.518439164, 1.512029954, 1.505620743, 1.537782568, 1.531373357, 1.524964146, 1.563535182, 1.557125971, 1.55071676, 1.544307549, 1.595697007, 1.948319377, 1.589287796, 1.941910166, 1.582878585, 1.935500955, 1.576469374, 1.929091744, 1.570060163, 1.922682533, 1.916273322, 1.909864111, 1.9034549, 1.897045689, 1.890636478, 1.884227268, 1.659904886, 1.653495675, 1.647086464, 1.640677254, 1.634268043, 1.627858832, 1.621449621, 1.61504041, 1.608631199, 1.602221988, 1.877933827, 1.871524616, 1.865115405, 1.858706194, 1.852296984, 1.845887773, 1.839478562, 1.833069351, 1.82666014, 1.820250929, 1.813841718, 1.807432507, 1.801023296, 1.794614086, 1.788204875, 1.781795664, 1.775386453, 1.768977242, 1.762568031, 1.75615882, 1.749749609, 1.743340398, 1.736931187, 1.730521977, 1.724112766, 1.717703555, 1.711294344, 1.704885133, 1.698475922, 1.692066711, 1.6856575, 1.679248289, 1.672839079, 1.666429868])

Y := Vector[row](782, [0, 0.006409211, 0.012818422, 0.019227633, 0.025636844, 0.032046054, 0.038455265, 0.044864476, 0.051273687, 0.057682898, 0.064092109, 0.07050132, 0.076910531, 0.083319742, 0.089728953, 0.096138163, 0.102547374, 0.108956585, 0.115365796, 0.121775007, 0.128184218, 0.134593429, 0.14100264, 0.147411851, 0.153821061, 0.160230272, 0.166639483, 0.173048694, 0.179457905, 0.185867116, 0.192276327, 0.198685538, 0.205094749, 0.21150396, 0.21791317, 0.224322381, 0.230731592, 0.237140803, 0.243550014, 0.249959225, 0.256368436, 0.262777647, 0.269186858, 0.275596068, 0.282005279, 0.28841449, 0.294823701, 0.301232912, 0.307642123, 0.314051334, 0.320460545, 0.326869756, 0.333278967, 0.339688177, 0.346097388, 0.352506599, 0.35891581, 0.365209251, 0.371618461, 0.378027672, 0.384436883, 0.390846094, 0.397255305, 0.403664516, 0.410073727, 0.416482938, 0.422892149, 0.429301359, 0.43571057, 0.442119781, 0.448528992, 0.454938203, 0.461347414, 0.467756625, 0.474165836, 0.480575047, 0.486984258, 0.493393468, 0.499802679, 0.50621189, 0.512621101, 0.519030312, 0.525439523, 0.531848734, 0.538257945, 0.544667156, 0.551076366, 0.557485577, 0.563894788, 0.570303999, 0.57671321, 0.58300665, 0.589415861, 0.595825072, 0.602234283, 0.608643494, 0.615052705, 0.621461916, 0.627871127, 0.634280338, 0.640689548, 0.647098759, 0.65350797, 0.659917181, 0.666326392, 0.672735603, 0.679144814, 0.685438254, 0.691847465, 0.698256676, 0.704665887, 0.711075098, 0.717484309, 0.72389352, 0.73030273, 0.736711941, 0.743121152, 0.749530363, 0.755939574, 0.762348785, 0.768757996, 0.775051436, 0.781460647, 0.787869858, 0.794279069, 0.80068828, 0.807097491, 0.813506702, 0.819915912, 0.826325123, 0.832618564, 0.839027775, 0.845436986, 0.851846196, 0.858255407, 0.864664618, 0.871073829, 0.87748304, 0.88377648, 0.890185691, 0.896594902, 0.903004113, 0.909413324, 0.915822535, 0.922231746, 0.928640957, 0.935050168, 0.941343608, 0.947752819, 0.95416203, 0.960571241, 0.966980452, 0.973389662, 0.979798873, 0.986208084, 0.992501525, 0.998910735, 1.005319946, 1.011729157, 1.018138368, 1.024547579, 1.030841019, 1.03725023, 1.043659441, 1.050068652, 1.056477863, 1.062887074, 1.069296285, 1.075705496, 1.082114707, 1.088408147, 1.094817358, 1.101226569, 1.10763578, 1.114044991, 1.120454201, 1.126747642, 1.133156853, 1.139566064, 1.145975274, 1.152384485, 1.158677926, 1.165087137, 1.171496348, 1.177905558, 1.184314769, 1.19072398, 1.197133191, 1.203426632, 1.209835842, 1.216245053, 1.222654264, 1.229063475, 1.235472686, 1.241881897, 1.248175337, 1.254584548, 1.260993759, 1.26740297, 1.273812181, 1.280221392, 1.286514832, 1.292924043, 1.299333254, 1.305742465, 1.312151676, 1.318560887, 1.324970097, 1.331263538, 1.337672749, 1.34408196, 1.350491171, 1.356900381, 1.363309592, 1.369603033, 1.376012244, 1.382421454, 1.388830665, 1.395239876, 1.401649087, 1.408058298, 1.414351738, 1.420760949, 1.42717016, 1.433579371, 1.439988582, 1.446397793, 1.452691233, 1.459100444, 1.465509655, 1.471918866, 1.478328077, 1.484737288, 1.491146499, 1.497439939, 1.50384915, 1.510258361, 1.516667572, 1.523076783, 1.529485994, 1.535779434, 1.542188645, 1.548597856, 1.555007067, 1.561416277, 1.567825488, 1.574234699, 1.58052814, 1.586937351, 1.593346561, 1.599755772, 1.606164983, 1.612574194, 1.618867634, 1.625276845, 1.631686056, 1.638095267, 1.644504478, 1.650913689, 1.657207129, 1.66361634, 1.670025551, 1.676434762, 1.682843973, 1.689253184, 1.695662395, 1.701955835, 1.708365046, 1.714774257, 1.721183468, 1.727592679, 1.73400189, 1.74029533, 1.746704541, 1.753113752, 1.759522963, 1.765932173, 1.772341384, 1.778634825, 1.785044036, 1.791453247, 1.797862457, 1.804271668, 1.810680879, 1.81697432, 1.823383531, 1.829792741, 1.836201952, 1.842611163, 1.849020374, 1.855313814, 1.861723025, 1.868132236, 1.874541447, 1.880950658, 1.887359869, 1.89376908, 1.90006252, 1.906471731, 1.912880942, 1.919290153, 1.925699364, 1.932108575, 1.938402015, 1.944811226, 1.951220437, 1.957629648, 1.964038859, 1.97044807, 1.97674151, 1.983150721, 1.989559932, 1.995969143, 2.002378353, 2.008671794, 2.015081005, 2.021490216, 2.027899427, 2.034308637, 2.040717848, 2.047011289, 2.0534205, 2.05982971, 2.066238921, 2.072648132, 2.079057343, 2.085350784, 2.091759994, 2.098169205, 2.104578416, 2.110987627, 2.117281068, 2.123690278, 2.130099489, 2.1365087, 2.142917911, 2.149211351, 2.155620562, 2.162029773, 2.168438984, 2.174848195, 2.181141635, 2.187550846, 2.193960057, 2.200369268, 2.206778479, 2.213071919, 2.21948113, 2.225890341, 2.232299552, 2.238708763, 2.245117974, 2.251411414, 2.257820625, 2.264229836, 2.270639047, 2.277048258, 2.283341698, 2.289750909, 2.29616012, 2.302569331, 2.308978542, 2.315387753, 2.321681193, 2.328090404, 2.334499615, 2.340908826, 2.347318037, 2.353727247, 2.360020688, 2.366429899, 2.37283911, 2.379248321, 2.385657531, 2.392066742, 2.398360183, 2.404769394, 2.411178604, 2.417587815, 2.423997026, 2.430406237, 2.436699678, 2.443108888, 2.449518099, 2.45592731, 2.462336521, 2.468629962, 2.475039172, 2.481448383, 2.487857594, 2.494266805, 2.500676016, 2.506969456, 2.513378667, 2.519787878, 2.526197089, 2.5326063, 2.539015511, 2.545308951, 2.551718162, 2.558127373, 2.564536584, 2.570945795, 2.577355006, 2.583648446, 2.590057657, 2.596466868, 2.602876079, 2.60928529, 2.61557873, 2.621987941, 2.628397152, 2.634806363, 2.641215574, 2.647624784, 2.653918225, 2.660327436, 2.666736647, 2.673145858, 2.679555068, 2.685848509, 2.69225772, 2.698666931, 2.705076141, 2.711485352, 2.717778793, 2.724188004, 2.730597215, 2.737006425, 2.743415636, 2.749824847, 2.756118288, 2.762527499, 2.768936709, 2.77534592, 2.781639361, 2.788048572, 2.794457782, 2.800866993, 2.807276204, 2.813569645, 2.819978856, 2.826388066, 2.832797277, 2.839206488, 2.845499929, 2.851909139, 2.85831835, 2.864727561, 2.871021002, 2.877430213, 2.883839423, 2.890248634, 2.896542075, 2.902951286, 2.909360496, 2.915769707, 2.922178918, 2.928472359, 2.93488157, 2.94129078, 2.947699991, 2.953993432, 2.960402643, 2.966811853, 2.973221064, 2.979514505, 2.985923716, 2.992332927, 2.998742137, 3.005035578, 3.011444789, 3.017854, 3.024263211, 3.030556651, 3.036965862, 3.043375073, 3.049784284, 3.056077724, 3.062486935, 3.068896146, 3.075305357, 3.081598797, 3.088008008, 3.094417219, 3.10082643, 3.10711987, 3.113529081, 3.119938292, 3.126347503, 3.132640943, 3.139050154, 3.145459365, 3.151868576, 3.158162016, 3.164571227, 3.170980438, 3.177273878, 3.183683089, 3.1900923, 3.196501511, 3.202794951, 3.209204162, 3.215613373, 3.222022584, 3.228316024, 3.234725235, 3.241134446, 3.247427887, 3.253837098, 3.260246308, 3.266539749, 3.27294896, 3.279358171, 3.285767381, 3.292060822, 3.298470033, 3.304879244, 3.311172684, 3.317581895, 3.323991106, 3.330284546, 3.336693757, 3.343102968, 3.349396408, 3.355805619, 3.36221483, 3.36850827, 3.374917481, 3.381326692, 3.387620133, 3.394029344, 3.400438554, 3.406731995, 3.413141206, 3.419550417, 3.425843857, 3.432253068, 3.438662279, 3.444955719, 3.45136493, 3.457774141, 3.464067581, 3.470476792, 3.476886003, 3.483179443, 3.489588654, 3.495997865, 3.502291306, 3.508700517, 3.515109727, 3.521403168, 3.527812379, 3.534105819, 3.54051503, 3.546924241, 3.553217681, 3.559626892, 3.566036103, 3.572329543, 3.578738754, 3.585032195, 3.591441406, 3.597850616, 3.604144057, 3.610553268, 3.616962479, 3.623255919, 3.62966513, 3.63595857, 3.642367781, 3.648776992, 3.655070432, 3.661479643, 3.667773084, 3.674182295, 3.680591505, 3.686884946, 3.693294157, 3.699587597, 3.705996808, 3.712406019, 3.718699459, 3.72510867, 3.731402111, 3.737811321, 3.744104762, 3.750513973, 3.756923184, 3.763216624, 3.769625835, 3.775919275, 3.782328486, 3.788621926, 3.795031137, 3.807733789, 3.82043644, 3.833139091, 3.845841742, 3.858544394, 3.871247045, 3.877540485, 3.890243137, 3.902945788, 3.909239228, 3.92194188, 3.934644531, 3.947347182, 3.953640622, 3.966343274, 3.979045925, 3.991748576, 4.004451228, 4.017153879, 4.02985653, 4.03614997, 4.048852622, 4.061555273, 4.074257924, 4.080551365, 4.093254016, 4.099547456, 4.112250108, 4.118543548, 4.124836988, 4.13753964, 4.14383308, 4.15012652, 4.162829172, 4.169122612, 4.181825263, 4.194527914, 4.200821355, 4.213524006, 4.219817446, 4.232520098, 4.245222749, 4.264334611, 4.277037262, 4.296149125, 4.308851776, 4.315145216, 4.321438657, 4.327732097, 4.334025537, 4.340318978, 4.346612418, 4.352790088, 4.352905858, 4.359083528, 4.365261198, 4.365376969, 4.371554639, 4.377848079, 4.384025749, 4.384141519, 4.390319189, 4.396612629, 4.402790299, 4.40290607, 4.40908374, 4.41537718, 4.42167062, 4.42784829, 4.427964061, 4.434141731, 4.440435171, 4.446612841, 4.446728611, 4.452906281, 4.459083951, 4.459199722, 4.465261621, 4.465377391, 4.471439291, 4.471555061, 4.477616961, 4.477732731, 4.483794631, 4.483910401, 4.48985653, 4.4899723, 4.490088071, 4.495918429, 4.4960342, 4.49614997, 4.501980329, 4.502096099, 4.50221187, 4.508042228, 4.508157998, 4.508273769, 4.514104127, 4.514219898, 4.514335668, 4.520050256, 4.520166026, 4.520281797, 4.520397568, 4.526112155, 4.526227926, 4.526343696, 4.532174055, 4.532289825, 4.532405596, 4.538351724, 4.538467495, 4.544413624, 4.544529394, 4.544645165, 4.550591294, 4.550707064, 4.556653193, 4.556768963, 4.556884734, 4.562715092, 4.562830863, 4.562946633, 4.568661221, 4.568776992, 4.568892762, 4.569008533, 4.574491579, 4.574533412, 4.57460735, 4.574649182, 4.57472312, 4.574764953, 4.574838891, 4.574880723, 4.574954661, 4.574996494, 4.575112264, 4.575228035, 4.575343805, 4.575459576, 4.575575346, 4.575691117, 4.579743085, 4.579858856, 4.579974626, 4.580090397, 4.580206167, 4.580321938, 4.580437708, 4.580553479, 4.580669249, 4.58078502, 4.582216098, 4.582331869, 4.582447639, 4.58256341, 4.58267918, 4.582794951, 4.582910721, 4.583026492, 4.583142262, 4.583258033, 4.583373803, 4.583489574, 4.583605344, 4.583721115, 4.583836885, 4.583952656, 4.584068427, 4.584184197, 4.584299968, 4.584415738, 4.584531509, 4.584647279, 4.58476305, 4.58487882, 4.584994591, 4.585110361, 4.585226132, 4.585341902, 4.585457673, 4.585573443, 4.585689214, 4.585804984, 4.585920755, 4.586036525])

 

(Tested on Maple 2021.1 and 2024.0, on Mac)

I want to write a Maple procedure that takes advantages of the latest features but doesn't break on older versions of Maple.

So I can write something like this:

   if version() >= VERSION then new_method else old_method end if

This works, but it has the problem that the version( ) command not only returns a version number but also writes three lines to the screen, like this:

 User Interface: 1794891
         Kernel: 1794891
        Library: 1794891

I don't want those lines to appear every time the procedure is used but I don't know how to make them go away.  Is there a way, or is there a better approach to achieving what I want?

Thanks, Brendan.

Hello everyone

I need help solving a system of equations as below. I'm looking for a way to do it, but I don't understand the general concept of how such an equation is calculated. So far I've been using a package in LabVIEW that worked similarly to Simulink and that was clear to me, whereas here I'm overwhelmed by the multitude of options and that's why I'm asking for help.

I need to solve these equations analogously to Matlab-Simulink, i.e., a time interval and integration step, and a numerical procedure in symbolic versions.

Help_me.mw

I see this question https://mathematica.stackexchange.com/questions/304317/how-to-draw-a-number-of-circles-inscribed-in-a-square-so-that-the-sum-of-the-rad

I have a square with length of side is $a$. How to draw a number of circles inscribed in a square so that the sum of the radii of the circle is greatest? In the below picture is twenty circles inscribed in a square. We can consider number of circles are 5, 6, ... We consider number of the circles is fixed.

How can I tell Maple to do that.

I am getting Maple server crash each time running this solve command.

Could others reproduce it? I am using windows 10. Maple 2024.  Why does it happen?

Will report it to Maplesoft in case it is not known. Worksheet below.

22396

restart;

23484

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1762 and is the same as the version installed in this computer, created 2024, June 13, 11:3 hours Pacific Time.`

sol:=(3^(1/2)*u(x)-1/3*3^(1/2)+(3*u(x)^2-2*u(x)-1)^(1/2))^(1/3*3^(1/2)) = x^(1/3*3^(1/2))*c__1;

(3^(1/2)*u(x)-(1/3)*3^(1/2)+(3*u(x)^2-2*u(x)-1)^(1/2))^((1/3)*3^(1/2)) = x^((1/3)*3^(1/2))*c__1

eval(sol,u(x) = u);

(3^(1/2)*u-(1/3)*3^(1/2)+(3*u^2-2*u-1)^(1/2))^((1/3)*3^(1/2)) = x^((1/3)*3^(1/2))*c__1

timelimit(30,[solve(%,u)]);


 

Download maple_crash_calling_solve_june_18_2024.mw

This bug seems to have been introduced in Maple 2023 since it crashes there also.

But not in Maple 2022. No crash there. Same PC.

22396

restart;

interface(version);

`Standard Worksheet Interface, Maple 2022.2, Windows 10, October 23 2022 Build ID 1657361`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1762. The version installed in this computer is 1401 created 2023, March 2, 10:49 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2022\Physics Updates\lib\`

sol:=(3^(1/2)*u(x)-1/3*3^(1/2)+(3*u(x)^2-2*u(x)-1)^(1/2))^(1/3*3^(1/2)) = x^(1/3*3^(1/2))*c__1;

(3^(1/2)*u(x)-(1/3)*3^(1/2)+(3*u(x)^2-2*u(x)-1)^(1/2))^((1/3)*3^(1/2)) = x^((1/3)*3^(1/2))*c__1

eval(sol,u(x) = u);

(3^(1/2)*u-(1/3)*3^(1/2)+(3*u^2-2*u-1)^(1/2))^((1/3)*3^(1/2)) = x^((1/3)*3^(1/2))*c__1

solve(%,u);

(1/18)*3^(1/2)*(3*(x^((1/3)*3^(1/2))*c__1)^(3^(1/2))+2*3^(1/2)+4*(x^((1/3)*3^(1/2))*c__1)^(-3^(1/2)))

 

 

Download maple_NO_crash_calling_solve_june_18_maple_2022.mw

Is this a valid behvior by int?   

int(A,x,method=_RETURNVERBOSE) hangs.

But  int(simplify(A),x,method=_RETURNVERBOSE) returns in few seconds with "default" result same as int(A,x)

Should this have happen? I try to avoid calling simplify unless neccessary because it can add csgn's and signums and so on to the result. 

But the question is: Should one really need to simplify the integrand to get the result in this example? Does this mean one should call simplify on the integrand to avoid the hang that can show up? 

This only happens when using method=_RETURNVERBOSE 

Just trying to find out if this is normal behavior and can be expected sometimes.

25844

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

restart;

25844

A:=exp(-1/2*cos(2*x))*exp(-sin(x)^2);
int(A,x);

exp(-(1/2)*cos(2*x))*exp(-sin(x)^2)

exp(1/2)*exp(-1)*x

int(A,x,method=_RETURNVERBOSE);  #hangs

int(simplify(A),x,method=_RETURNVERBOSE)

["default" = x*exp(-1/2), "risch" = x*exp(-1/2), "orering" = x*exp(-sin(x)^2-(1/2)*cos(2*x)), FAILS = ("gosper", "lookup", "derivativedivides", "norman", "trager", "meijerg", "elliptic", "pseudoelliptic", "parallelrisch", "parts")]

 

 

Download why_int_hang_unless_simplify_june_15_2024.mw

As Maple is not equipped to handle numerical solutions of elliptic PDEs, can anyone help top solve PDEs by finite differences or any other numerical solver?

pde.mw

First 19 20 21 22 23 24 25 Last Page 21 of 2221