Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

How do I animate a matrixplot frame by frame so it displayes the highest and lowest value first and then sort of starts "relaxing" to the boundary conditions that will be set to 0? Thank you.

I want to plot contour for piecewise  function , here is my code

with(plots):
d1:=0.1:eta:=0.01:k:=2:L:=1:
mu:=0.01:delta1:=0.1:delta2:=0.2:
d1:=0.2:d2:=0.2:L1:=0.2: L2:=0.2:
h:=z->piecewise( z<=d1,    1,
                 z<=d1+L1,   1-(delta1/(2))*(1 + cos(2*(Pi/L1)*(z - d1 - L1/2))), 
                        z<=d1+L1+d2,  1 ,          
                    z<=d1+L1+d2+L2,  1-(delta2/(2))*(1 + cos(2*(Pi/L2)*(z - d1 - d2-L1-L2/2))),
                 z<=L,    1):
A1:=((k+2)*(k+3)*(1-mu)^(k+1)-2*(1-mu)^(k+2)*(k+2+mu))^(1/k):
A2:=(A1*r/h(z)^(1+3/k)):
contourplot(A2,z=0..1,r=-h(z)..h(z),colour=black,axes=boxed);

I am attempting to write a series representation of a general integral of a function from a to b as follows:

int(f(x), x = a..b)= h*sum((c_k)*f(a+kh))+O(h^p),k=1..N;

where h:=(b-a)/(N+1), p(N) is greater than or equal to N + 1 and c_k are coefficients.  I then need to write procedures with Maple to evalue c_k from 1,..,N and also to evaluate P(N) for any N.  If I take the case for N = 3 and N = 6 I have to use those procedures to prove that:

int(f(x), x = a..b)=(4h/3)*(2*f_1 - f_2 +2*f_3) + O(h^5) = (7*h/1440)*(611*(f_1 + f_6) - 453*(f_2 + f_5) + 562*(f_3 + f_4)) + O(h^7) 

where f_k = f(a + kh).  I am really at a loss as to how to write this procedure, although I may have used something similar before:

P:=proc(p) add((1/k^(1/10))*(sin(1/k)-1/k), k=1..10^p) end proc;
seq( evalhf(P(p)), p = 1 .. 5 );
 

 



I am using MAPLE for quantum computation.
It appears to me that the Physics[Expand] and Physics[Symplify] functions do not operate as I expected on
Kets with multiple quantum numbers. The functions no not consider the non commutative nature of tensor
products of Kets. (neither of bras incidently). It would be very useful if thos could be adjusted in some way.

Thank you for your help

LL

restart;

with(Physics):

Setup(mathematicalnotation=true,
      noncommutativecolor=black,
      quantumoperators=q,
      noncommutativeprefix={q,psi,beta});

[mathematicalnotation = true, noncommutativecolor = black, noncommutativeprefix = {beta, psi, q}, quantumoperators = {q}]

(1)

Ket(psi):=Ket(q,-1)*Ket(q,1)*Ket(q,-1);
Ket(psi):=Ket(q,-1,1,-1);
'q[1].Ket(psi)'=q[1].Ket(psi);
'q[2].Ket(psi)'=q[2].Ket(psi);
'q[3].Ket(psi)'=q[3].Ket(psi);

Physics:-`*`(Physics:-Ket(q, -1), Physics:-Ket(q, 1), Physics:-Ket(q, -1))

 

Physics:-Ket(q, -1, 1, -1)

 

Physics:-`.`(q[1], Physics:-Ket(psi)) = -Physics:-Ket(q, -1, 1, -1)

 

Physics:-`.`(q[2], Physics:-Ket(psi)) = Physics:-Ket(q, -1, 1, -1)

 

Physics:-`.`(q[3], Physics:-Ket(psi)) = -Physics:-Ket(q, -1, 1, -1)

(2)

Ket(beta,-1,-1):=(1/2)*(sqrt(2)*(Ket(q,-1)*Ket(q,-1)));
Ket(beta,-1,-1):=(1/2)*(sqrt(2)*(Ket(q,-1,-1)));

(1/2)*2^(1/2)*Physics:-`*`(Physics:-Ket(q, -1), Physics:-Ket(q, -1))

 

(1/2)*2^(1/2)*Physics:-Ket(q, -1, -1)

(3)

Ket(Prod):='Ket(psi)'*'Ket(beta,-1,-1)';

Physics:-`*`(Physics:-Ket(psi), Physics:-Ket(beta, -1, -1))

(4)

Ket(Prod):=Ket(psi)*Ket(beta,-1,-1);
'Expand(Ket(Prod))'=Expand(Ket(Prod));
'Expand(Ket(Prod))'<>'(Ket(Prod))';

'Simplify(Ket(Prod))'=Simplify(Ket(Prod));
'Simplify(Ket(Prod))'<>'(Ket(Prod))'

(1/2)*2^(1/2)*Physics:-`*`(Physics:-Ket(q, -1, 1, -1), Physics:-Ket(q, -1, -1))

 

Physics:-Expand(Physics:-Ket(Prod)) = (1/2)*2^(1/2)*Physics:-`*`(Physics:-Ket(q, -1, -1), Physics:-Ket(q, -1, 1, -1))

 

Physics:-Expand(Physics:-Ket(Prod)) <> Physics:-Ket(Prod)

 

Physics:-Simplify(Physics:-Ket(Prod)) = (1/2)*2^(1/2)*Physics:-`*`(Physics:-Ket(q, -1, -1), Physics:-Ket(q, -1, 1, -1))

 

Physics:-Simplify(Physics:-Ket(Prod)) <> Physics:-Ket(Prod)

(5)

q[1]*q[2]-q[2]*q[1]<>0;
q[1]*q[3]-q[3]*q[1]<>0;
q[2]*q[3]-q[3]*q[2]<>0;

Physics:-`*`(q[1], q[2])-Physics:-`*`(q[2], q[1]) <> 0

 

Physics:-`*`(q[1], q[3])-Physics:-`*`(q[3], q[1]) <> 0

 

Physics:-`*`(q[2], q[3])-Physics:-`*`(q[3], q[2]) <> 0

(6)

 


 

Download Expand_Simplify-of-Kets.mw


 

 

 

Dear Friends
Is there a way to solve a complicated integration in less possible time?

Thanks

_________________________________________________________________________________
 

restart;
Digits := 100:
tm := time():
with(LinearAlgebra):

m := 6:
a := 0.1:
b := 10*a:
E := 1:
h := 1:
nu := 0.3:

w := (r-b)^2*(r-a)^2*add(add(W[n, i]*r^n*t^(i-n), n = 0 .. i), i = 0 .. m):
ur := -z*(diff(w, r)):
ut := -z*(diff(w, t))/r:
er := diff(ur, r)+(1/2)*(diff(w, r))^2:
et := ur/r+(diff(ut, t))/r+(diff(w, t))^2/(2*r^2):
grt := diff(ut, r)-ut/r+(diff(ur, t))/r+(diff(diff(w, t), r))/r:
u := -(1/2)*E*(2*er*et*nu+er^2+et^2)/(nu^2-1)+(1/2)*E*grt^2/(2*(1+nu)):

PI := int(int(int(u*r, z = -(1/2)*h .. (1/2)*h), t = 0 .. 2*Pi), r = a .. b)-0.5*P*(int(int(r*(diff(w, r))^2, r = a .. b), t = 0 .. 2*Pi)):

Time = time()-tm;

Does anyone know how to calculate basic reproduction number using maple coding? Or by any chance, anyone know how to solve it by hand with this complicated equations?
 

restart

interface(imaginaryunit = j)

I

(1)

lambda := k*tau*(C*Upsilon+I)/N

k*tau*(C*Upsilon+I)/N

(2)

eqn1 := (1-p)*Pi+phi*V+delta*R-(mu+lambda+`&vartheta;`)*S

(1-p)*Pi+phi*V+delta*R-(mu+k*tau*(C*Upsilon+I)/N+vartheta)*S

(3)

eqn2 := p*Pi+`&vartheta;`*S-(lambda*`&epsilon;`+mu+phi)*V

p*Pi+vartheta*S-(epsilon*k*tau*(C*Upsilon+I)/N+mu+phi)*V

(4)

eqn3 := rho*lambda*S+rho*`&epsilon;`*lambda*V+I*(1-q)*eta-(mu+beta+chi)*C

rho*k*tau*(C*Upsilon+I)*S/N+rho*epsilon*k*tau*(C*Upsilon+I)*V/N+(1-q)*eta*I-(mu+beta+chi)*C

(5)

eqn4 := (1-rho)*lambda*S+(1-rho)*`&epsilon;`*lambda*V+chi*C-I*(mu+alpha+eta)

(1-rho)*k*tau*(C*Upsilon+I)*S/N+(1-rho)*epsilon*k*tau*(C*Upsilon+I)*V/N+chi*C-(mu+alpha+eta)*I

(6)

eqn5 := beta*C+I*q*eta-(mu+delta)*R

beta*C+q*eta*I-(mu+delta)*R

(7)

``


 

Download Equation_for_basic_reproduction_number.mwEquation_for_basic_reproduction_number.mw

I am using the Physics package for quantum mechanic.

Ket product are supposed to be noncommutative and the Simplify function
appears to ignore the propety.

I must be doing someting wrong.

Thank you for your help

LL

 

Please, where are the statistical tolerance intervals in Maple, similar to those we have in MiniTab and in R ?  maybe in statistical quality control ?

Example 1 :  Package « tolerance » in R (https://cran.r-project.org/web/packages/tolerance/tolerance.pdf) : 

 

« Description :  Statistical tolerance limits provide the limits between which we can expect to find a specified proportion of a sampled population with a given level of confidence. This package provides functions for estimating tolerance limits (intervals) for various univariate distributions (binomial, Cauchy, discrete Pareto, exponential, two-parameter exponential, extreme value, hypergeometric, Laplace, logistic, negative binomial, negative hypergeometric, normal, Pareto, Poisson-Lindley, Poisson, uniform, and Zipf-Mandelbrot), Bayesian normal tolerance limits, multivariate normal tolerance regions, nonparametric tolerance intervals, tolerance bands for regression settings (linear regression, nonlinear regression, nonparametric regression, and multivariate regression), and analysis of variance tolerance intervals. Visualizations are also available for most of these settings. »

 

Example 2 : 

https://support.minitab.com/en-us/minitab/18/help-and-how-to/quality-and-process-improvement/quality-tools/how-to/tolerance-intervals-normal-distribution/methods-and-formulas/methods-and-formulas/

https://support.minitab.com/fr-fr/minitab/18/help-and-how-to/quality-and-process-improvement/quality-tools/how-to/tolerance-intervals-nonnormal-distribution/methods-and-formulas/tolerance-intervals/   

Hi, i want to investigate  chaos for the problem , cantilever beam under random narro band excitation, but the code has errors .the code is this:

      restart:with(plots):      h:=1: Omega:=(0..376):alpha1:=617.2:alpha2:=1.02*10^(8): c:=.002:k:=18.4:  step:=0.1:imax:=376:  for i from 0 to imax do;  Omega[i]:=i*step:   f:=evalf(solve({((-a*Omega[i]^(2)+alpha1*a+3/(4)*alpha2*a^(3)+1/(4)*k*Omega[i]^(2)*a^(3)-(3)/(4)*k*Omega[i]^(2)*a^(3))^(2)+(c*Omega[i]*a^())^(2))=h^(2),a>0}));  ff[i]:=((rhs(f[1]))^(2))/(2):  end do:   l1:=[[Omega[n],ff[n]] $n=0..imax]:  p1:=plot(l1, x=0..3,y=0..1,  style=point,symbol=solidcircle,symbolsize=4,color=red):    jmax:=914: f1:=array(377..914):f2:=array(377..914):f3:=array(377..914):Omega1:=array(377..914):  for j from 377to jmax do;  Omega1[j]:=j*step:   fff:=evalf(solve({((-a*Omega1[j]^(2)+alpha1*a+3/(4)*alpha2*a^(3)+1/(4)*k*Omega1[j]^(2)*a^(3)-(3)/(4)*k*Omega1[j]^(2)*a^(3))^(2)+(c*Omega1[j]*a^())^(2))=h^(2),a>0}));  f1[j]:=((rhs(fff[1,1]))^(2))/(2):f2[j]:=((rhs(fff[2,1]))^(2))/(2):f3[j]:=((rhs(fff[3,1]))^(2))/(2):  end do:   ll1:=[[Omega1[n],f1[n]] $n=377..jmax]:  pp1:=plot(ll1, x=0..10,y=0..1,  style=point,symbol=solidcircle,symbolsize=4,color=red):    ll2:=[[Omega1[n],f2[n]] $n=377..jmax]:  pp2:=plot(ll2, x=0..10,y=0..1,  style=point,symbol=solidcircle,symbolsize=4,color=red):    ll3:=[[Omega1[n],f3[n]] $n=377..jmax]:  pp3:=plot(ll3, x=0..15,y=0..1,  style=point,symbol=solidcircle,symbolsize=4,color=red):       plot({  seq(seq(p1), seq(seq(pp1),seq(seq(pp2),seq(seq(pp3))  },style=point,title=`Pitchfork Diagram`);  Thanks for your help

Below is a link to my worksheet that evaluates 6 expressions that are presumably equivalent.  However, there seems to be a region for 7<n<100 where the results diverge.  All other values of n yield identical results.  I am at a TOTAL loss as to what is happening.  I hope that someone here might shed some light on this quirk.

divergent_behavior.mw

We conjecture that the polynomial h(n) = n^2 + n + 41 is prime for an infinite number of values n.
We furthur conjecture that p(n) = n^2 + 1 is prime an infinite number of times.

I have shown that the set (x,y) with h(y) mod x is congruent to 0 can be written down.  It is p(x,y).  p(x,y) is the set of all divisors of h(n).  See

https://sites.google.com/site/primeproducingpolynomial/

landau.mw

Regards,

Matt

Am I applying improper syntax for the is command?  Out of the 5 attempts to equate X with the time derivative of S11 only the combine command yields the expected result.  If only combine works then why do the others not work?
 

Ck1 := sin(Pi*k)/(Pi*k); 1; Ck2 := (1-cos(Pi*k))/(Pi*k); 1; S11 := a[0]+int(sum(2*Ck2*Pi*k*cos(2*Pi*k*x/T)/T, k = 1 .. m), x = 0 .. t); -1; Q1 := 2*sin(alpha)*(diff(S11, t)); -1; Q3 := sum(2*Ck2*Pi*k*(sin(alpha+2*Pi*k*t/T)+sin(alpha-2*Pi*k*t/T))/T, k = 1 .. m); -1; is(Q1 = Q3)

true

(1)

sum1 := sum(2*Ck2*Pi*k*cos(2*Pi*k*x/T)/T, k = 1 .. m):

true

(2)

subs(x = t, simplify(expand(combine(2*sin(alpha)*sum1)))) = simplify(expand(combine(Q3)))"(->)"true

NULL

m := 2*n;

-4*sin(Pi*t/T)*sin(Pi*t*n/T)*cos(Pi*t*n/T)*(2*cos(Pi*t*n/T)^2-1)/(T*cos(Pi*t/T)*(-1+cos(Pi*t/T)^2))

(3)

is(`assuming`([X = diff(S11, t)], [n::integer])), is(`assuming`([expand(X = diff(S11, t))], [n::integer])), is(`assuming`([combine(X = diff(S11, t))], [n::integer])), is(`assuming`([eval(X = diff(S11, t))], [n::integer])), is(`assuming`([value(X = diff(S11, t))], [n::integer])), simplify(`assuming`([combine(X-(diff(S11, t)))], [n::integer]))

false, false, true, false, false, 0

(4)

X

-4*sin(Pi*t/T)*sin(Pi*t*n/T)*cos(Pi*t*n/T)*(2*cos(Pi*t*n/T)^2-1)/(T*cos(Pi*t/T)*(-1+cos(Pi*t/T)^2))

(5)

`assuming`([combine(X-(diff(S11, t)))], [n::integer])

0

(6)

`assuming`([X-combine(diff(S11, t))], [n::integer])

-4*sin(Pi*t/T)*sin(Pi*t*n/T)*cos(Pi*t*n/T)*(2*cos(Pi*t*n/T)^2-1)/(T*cos(Pi*t/T)*(-1+cos(Pi*t/T)^2))-(2*cos((-Pi*t+4*Pi*t*n)/T)-2*cos((Pi*t+4*Pi*t*n)/T))/(T*cos(Pi*t/T)-T*cos(3*Pi*t/T))

(7)

"(=)"

0

(8)

``


 

Download syntax_for_is.mw

 

Hello Guys,

Can maple derive Einstein field equations from Einstein-Hilbert action ?

 

Thx

The attached worksheet performs two functions:

(1) It lets me print 4 × 6 Index Cards for the short entries in each table.

(2) It allows for easy storage and retrieval of syntax (code).

The worksheet has many tables, each separated by a Page Break.

Questions:

(a) Is there a way to sort all the different tables so they will be arranged in alphebetical order?

(b) When I select one table to print and open the Print Dialog, the "Selection" option is grayed out. (see graphic below).  (1) Is there a way to enable the selection option?  (2) Is there a way to determine what page I am on so I can use the "Pages from...to" option?  If I need to number the pages, will the page numbers reset to parallel a new alphabetic sort order.

Many thanks in advance.  See WC29_4_BY_6_NOTE_CARDS_UNSORTED.mw attached. And see image of Print Dialog below.

Les

Hello,

How can i solve this integro-PDE(partial diffrential equation)??

regards...

eq := (1+6*(l/h)^2/(1+nu))*(diff(u(xi, tau), xi, xi, xi, xi)+int(-B*lambda*exp(-lambda(tau-s))*(diff(u(xi, s), xi, xi, xi, xi)), s = 0 .. tau))+diff(u(xi, tau), tau, tau) = alpha*(int((diff(u(xi, tau), xi))^2, xi = 0 .. 1)+int(-B*lambda*exp(-lambda(tau-s))*(int((diff(u(xi, tau), xi))^2, xi = 0 .. 1)), s = 0 .. tau))*(diff(u(xi, tau), xi, xi))+V^2*(sum(j*u(xi, tau)^(j-1), j = 1 .. 8))

jing-Fu.mw

First 150 151 152 153 154 155 156 Last Page 152 of 365