Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

Hello,
When I try to put the Gcdex in a procedure and start maplemint, then there occurs an error.

Gcdex(x^2 - 1, x - 2, x ,'s','t') mod 3;

--> works

But:

restart;
a := proc()
    Gcdex(x^2 - 1, x - 2, x ,'s','t') mod 3;
end proc;
maplemint(a);

Then there is an error I don't understand.

Error, (in maplemint/expression) not implemented POLY

By the way I have a fundamental problem to understand, where the values s and t are saved after calling Gcdex (or Quo, Rem, etc.). Till now I thought, that variables s and t are created, but when I declare s, t at the beginning as local variables and start maplemint, then there is something like:

    These parameters have the same name as constants:
      3
    These local variables were used before they were assigned a value:
      r::name, (-x-1)::name, (x-1)::name

So the names of s and t changed, they don't assign a new value? I don't understand that.

 

How do I make find and replace work?  Currently the replace and find button is grayed out.  What magic gets me into a state where the button can be used?

Thanks

P.S. Is there any "package" or "mode" or way some how that emacs key bindings can be made to work (including things like find and replace)?  The user interface would be much improved if I knew how to enable that.

I having a hard time with defining a vector, in order to store in it some data, then plot it and export it to a file, I copied all what's in the help instructures but it doesn't work everytime, please it's urgent for my PhD thesis !

Hello dear Maple,

My name is Bulat, I'm student of Kazan National Research Technical University ( Russia). In our High Program we used your product ( Maple V, Release 4). Now I have two problems and I haven't no idea how I resolve their. I am forced to ask for your help. I upload PrintScreen of my two problems. Please help me to solve them. I' ll be grateful for your help. Sorry for my English :(.

Yours very truly, Bulat

with(plots):
with(Grid):

HeatPC := proc (f, g, n, lambda, N, T)
 local k, u, i, L,fcoef;
 fcoef := proc (y) options operator, arrow; sqrt(2)*sin(lambda*y) end proc;
 u := proc (y, t) options operator, arrow; sum((int(fcoef(x)*g, x = 0 .. 1, numeric))*exp(-k*lambda*t)+exp(-k*lambda*t)*(int(exp(k*lambda*s)*(int(f, x = 0 .. 1, numeric)), s = 0 .. t, numeric)), k = 1 .. n) end proc;
 L := [Grid[Seq](plot(u(x, (i*T-T)/N), x = 0 .. 1, color = COLOR(HUE, i/N), legend = typeset((i*T-T)/N, "s")), i = 1 .. N)]; 
return u(1, 1), display(L, legendstyle = [location = right])
 end proc;

h := piecewise(x <= 0, 0, 0 < x and x < 1, 3, x >= 1, 0)

HeatPC(1, h, 100, Pi, 10, 1.5)

I'm trying to use the above procedure to plot graphs for different inputs. To make the code easier on the eye I want to split my main function u into several smaller functions. To that end I added the function fcoef. Now when I try to run the procedure for simple input values I get the error "Warning, expecting only range variable x in expression 100.*int(fcoef(x)*piecewise(x <= 0.,0.,0. < x and x < 1.,1.,1. <= x,0.),x = 0. .. 1.) to be plotted but found name fcoef". However u still evaluates nicely at (1,1) so obviously my function fcoef is well defined. How do I go about getting plot to recognize this?

 

 

Hello everyone.

I was wondering if anyone knew of a way to have a supscript+superscript layout on the left hand side of the equation in 1D math?

When I try to use (A)[b]^(c) from the layout palette it does not allow me to use it in 1D Math, and when using it in any of the math types (1D and both of the 2D options) it is not accepted on the left hand side of the equation.

I am writing a project where we use transformation matrices, and I seem to be unable to define them as they are supposed to be. I am left with T__40 when I want to write (T)[4)^(0).

Help would be very much appreciated.

I  encountered a non-integrable integral in the process of solving the following process, . How to achieve its numerical solution? Such as in a looping   code:

#######
pa[i] := pa[i-1]-(Int(subs(t = tau, Lpa[i-1]+Na1[i-1]-Na2[i-1]), tau = 0 .. t)); 

pw[i] := pw[i-1]-(Int(subs(t = tau, Lpw[i-1]+Nw1[i-1]-Nw2[i-1]), tau = 0 .. t)); u[i] := u[i-1]-(Int(subs(t = tau, Lu[i-1]+Nu1[i-1]+Nu2[i-1]), tau = 0 .. t));

######
Detailed code see annexBC2.mw

what does it means and what it will do. Can some one help me for solving this

Shootlib := "C:/Shoot9"; libname := Shootlib, libname; with(Shoot);

while i m receiving the following message:

"Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received Shoot "

Full program is :

restart; Shootlib := "C:/Shoot9"; libname := Shootlib, libname; with(Shoot);
with(plots):
N1 := 1.0; N2 := 2.0; N3 := .5; Bt := 6; Re_m := N1*Bt; gamma1 := 1;
FNS := {f(eta), fp(eta), fpp(eta), g(eta), gp(eta), m(eta), mp(eta), n(eta), np(eta), fppp(eta)};
ODE := {diff(f(eta), eta) = fp(eta),
        diff(fp(eta), eta) = fpp(eta),
        diff(fpp(eta), eta) = fppp(eta),
        diff(g(eta), eta) = gp(eta),
        diff(gp(eta), eta) = N1*(2.*g(eta)+(eta-2.*f(eta))*gp(eta)+2.*g(eta)*fp(eta)+2.*N2*N3*(m(eta)*np(eta)-n(eta)*mp(eta))),
        diff(m(eta), eta) = mp(eta),
        diff(mp(eta), eta) = Re_m*(m(eta)+(eta-2.*f(eta))*mp(eta)+2.*m(eta)*fp(eta)),
        diff(n(eta), eta) = np(eta),
        diff(np(eta), eta) = Re_m*(2.*n(eta)+(eta-2.*f(eta))*np(eta)+2.*N2/N3*m(eta)*gp(eta)),
        diff(fppp(eta), eta) = N1*(3.*fpp(eta)+(eta-2.*f(eta))*fppp(eta)-2.*N2*N2*m(eta)*(diff(mp(eta), eta)))
       }:
   
blt := 1.0;
IC := { f(0) = 0,
        fp(0) = 0,
        fpp(0) = alpha1,
        g(0) = 1,
        gp(0) = beta1,
        m(0) = 0,
        mp(0) = beta2,
        n(0) = 0,
        np(0) = beta3,
        fppp(0) = alpha2
      };
BC := { f(blt) = .5,
        fp(blt) = 0,
        g(blt) = 0,
        m(blt) = 1,
        n(blt) = 1};
infolevel[shoot] := 1;
 

HI

please help me for dsolve this nonlinear differential equations

thanls...

HAB.mw
 

restart; Digite := 100; Phi0 := 5; A := b*h; g13 := 31/250000000; g1 := 113/500000; f13 := 1/1000000000; c1 := 226000000000000; b := 10*10^(-9); J := (1/12)*b*h^3; h := 15*10^(-9); L := 100*10^(-9); E1 := (339/10000000000000000000000)*(diff(u(x), x, x, x, x))+(1017/10000000000000000000000)*(diff(w(x), x, x))*(diff(w(x), x, x, x))+(339/10000000000000000000000)*(diff(w(x), x, x, x, x))*(diff(w(x), x))-(339/10000)*(diff(u(x), x, x))-(339/10000)*(diff(w(x), x))*(diff(w(x), x, x)) = 0

E2 := -(1017/1600000000000000000000000000000000000000)*(diff(w(x), x, x, x, x, x, x))+(1589109/2500000000000000000000000)*(diff(w(x), x, x, x, x))-(339/10000*(diff(u(x), x, x)+(diff(w(x), x))*(diff(w(x), x, x))))*(diff(w(x), x))-(diff(w(x), x, x))*((339/10000)*(diff(u(x), x))+(339/20000)*(diff(w(x), x))^2+0.5824000000e-4)+(339/10000000000000000000000)*(diff(w(x), x, x))*(diff(u(x), x, x, x)+(diff(w(x), x, x))^2+(diff(w(x), x, x, x))*(diff(w(x), x)))+(339/10000000000000000000000)*(diff(w(x), x))*(diff(u(x), x, x, x, x)+3*(diff(w(x), x, x))*(diff(w(x), x, x, x))+(diff(w(x), x, x, x, x))*(diff(w(x), x)))-2 = 0:
 

E3 := -5.385803274*10^(-17)*(diff(Phi(x), x, x))+2.659881780*Phi(x)-5.125107476*10^(-20)*(diff(psi(x), x, x))+1.146681319*psi(x)+3.300000000*10^(-8)*(diff(w(x), x, x)) = 0:

E4 := -5.125107476*10^(-20)*(diff(Phi(x), x, x))+1.146681319*Phi(x)+(891/100000000000000)*(diff(psi(x), x, x))/Pi+34976.39822*psi(x)+0.4351500000e-5*(diff(w(x), x, x)) = 0:

dsys3 := {EQ1, EQ2, EQ3, EQ4, c1*J*((D@@2)(w))(0)+A*g13*((D@@2)(w))(0)-2*b*f13*Phi0-g1*J*((D@@4)(w))(0)+g1*A*(((D@@2)(u))(0)+((D@@1)(w))(0)*((D@@2)(w))(0))*((D@@1)(w))(0) = 0, c1*J*((D@@2)(w))(L)+A*g13*((D@@2)(w))(L)-2*b*f13*Phi0-g1*J*((D@@4)(w))(L)+g1*A*(((D@@2)(u))(L)+((D@@1)(w))(L)*((D@@2)(w))(L))*((D@@1)(w))(L) = 0, Phi(0) = 0, Phi(L) = 0, psi(0) = 0, psi(L) = 0, u(0) = 0, u(L) = 0, w(0) = 0, w(L) = 0, (D(u))(0) = 0, (D(u))(L) = 0, ((D@@2)(w))(0) = 0, ((D@@2)(w))(L) = 0}; dsolve(dsys3, numeric, initmesh = 3024, abserr = 0.1e-4)

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 

``


 

Download HAB.mw

 

I uploaded this file AnimationTest.mw to the Maple Cloud. One a 3d animation and one just a 3d plot. When I open the file in the Maple Cloud from my browser,  I cannot rotate either plot with the mouse. Is there a way to change the worksheets so rotation from the browser will be possible?

I Could Not Write An If Then Or Ifelse Statement. Please Help Me.

f := unapply(x^2-2, x); a := 1; b := 2; n := 10; Digits := 10;
      2    
x -> x  - 2
                               1
                               2
                               10
                               10
c := evalf(eval((a*f(b)-b*f(a))/(f(b)-f(a))));
                          1.333333333
if  f(c)*f(a)<0 then ;
          "      k:=evalf(eval(|(f(c))/(b-c)|)) and "

                          /(1 + k) a f(b) - b f(a)\
             x[i] := evalf|-----------------------|
                          \  (1 + k) f(b) - f(a)  /
            "     elif f(x[i])*f(a)<0 then b:=x[i]"
                 "     else b:=c and a:=x[i] "
                  "     if f(c)*f(a)>0 then "
                 "      k:=|(f(c))/(b-c)|and "

                          /a f(b) - b f(a) (1 + k)\
             x[i] := evalf|-----------------------|
                          \  f(b) - f(a) (1 + k)  /
            "     elif f(x[i])*f(a)>0 then a:=x[i]"
              "     else a:=c and b:=x[i] end if"

Error, unterminated 'if' statement
     Typesetting:-mambiguous(Typesetting:-mambiguous(

       if fApplyFunction(c)sdotfApplyFunction(a)lt0 then , 

       Typesetting:-merror("unterminated 'if' statement")))

Im trying to solve 12 equations with 12 variables but I can't solve. Please help and advise me to solve this problem. Iproject3.mw
project3.mw

 

 

 

Hi, I have a big system with 27 polynomial equations in 16 unknowns: f_1=...=f_27=0.  I can store these equations but I cannot calculate a Grobner basis of the ideal  J generated by my polynomials (allocation problem) - I use the library "with(FGb)"-  What interests me is whether my system is minimal in the following sense.

If, for example,  I remove f_1, is the ideal generated by (f_2,...f_27)  J again ? That is to say, is f_1 in the ideal generated by f_2,...,f_27 ? I would like to get an answer "yes" or "no" for each removed  f_i.

My question: can we solve the problem above  without calculating a Grobner basis of J?

Thanks in advance.

 

 

 

 

 


 

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d

diff(Q(t), t) = h__1(t)*A*(T__1(t)-T__1s(t))

diff(Q(t), t) = h__2(t)*A*(T__2s(t)-T__2(t))

Q(t) = m__1*c__p*(T__1i-T__1(t))

Q(t) = m__2*c__p*(T__2(t)-T__2i)

h__1(t) = k(T__1(t), T__1s(t))*(.825+.387*(g*h^3*c__p*beta(T__1(t), T__1s(t))*rho(T__1(t), T__1s(t))^2*(T__1(t)-T__1s(t))/(k(T__1(t), T__1s(t))*mu(T__1(t), T__1s(t))))^(1/6)/(1+(.492*k(T__1(t), T__1s(t))/(c__p*mu(T__1(t), T__1s(t))))^(9/16))^(8/27))^2/h

h__2(t) = k(T__2(t), T__2s(t))*(.825+.387*(g*h^3*c__p*beta(T__2(t), T__2s(t))*rho(T__2(t), T__2s(t))^2*(T__2s(t)-T__2(t))/(k(T__2(t), T__2s(t))*mu(T__2(t), T__2s(t))))^(1/6)/(1+(.492*k(T__2(t), T__2s(t))/(c__p*mu(T__2(t), T__2s(t))))^(9/16))^(8/27))^2/h

 

 

rho(T__1(t), T__1s(t)) = 999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4

beta(T__1(t), T__1s(t)) = -(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)
mu(T__1(t), T__1s(t)) = 2.414*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)

k(T__1(t), T__1s(t)) = -9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949

 

 

rho(T__2(t), T__2s(t)) = 999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4

beta(T__2(t), T__2s(t)) = -(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)
mu(T__2(t), T__2s(t)) = 2.414*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)

k(T__2(t), T__2s(t)) = -9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949

 

"`h__1`(t)=(-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949)/(h) (0.825+(0.387 ((g h^(3) `c__p` (-(4.216485*10^(-2)-7.097451*10^(-3) (`T__1`(t)+`T__1s`(t))+2.63217825*10^(-5) (`T__1`(t)+`T__1s`(t))^(2)-4.9518879*10^(-8) (`T__1`(t)+`T__1s`(t))^(3))/(999.9399+2.1082425*10^(-2) (`T__1`(t)+`T__1s`(t))-1.77436275*10^(-3) (`T__1`(t)+`T__1s`(t))^(2)+0.438696375*10^(-5) (`T__1`(t)+`T__1s`(t))^(3)  -0.6189861563*10^(-8) (`T__1`(t)+`T__1s`(t))^(4))) (999.9399+2.1082425*10^(-2) (`T__1`(t)+`T__1s`(t))-1.77436275*10^(-3) (`T__1`(t)+`T__1s`(t))^(2)+0.438696375*10^(-5) (`T__1`(t)+`T__1s`(t))^(3)  -0.6189861563*10^(-8) (`T__1`(t)+`T__1s`(t))^(4))^(2) (`T__1`(t)-`T__1s`(t)))/((-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949) 2.414*10^((247.8)/(0.5 (`T__1`(t)+`T__1s`(t))+133)-5)))^((1)/(6)))/((1+((0.492 (-9.481411*10^(-6) (`T__1`(t)+`T__1s`(t))^(2)+2.1356735*10^(-3) (`T__1`(t)+`T__1s`(t))+0.5599920949))/(`c__p` 2.414*10^((247.8)/(0.5 (`T__1`(t)+`T__1s`(t))+133)-5)))^((9)/(16)))^((8)/(27))))^(2)"

"`h__2`(t)=(-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949)/(h) (0.825+(0.387 ((g h^(3) `c__p` (-(4.216485*10^(-2)-7.097451*10^(-3) (`T__2`(t)+`T__2s`(t))+2.63217825*10^(-5) (`T__2`(t)+`T__2s`(t))^(2)-4.9518879*10^(-8) (`T__2`(t)+`T__2s`(t))^(3))/(999.9399+2.1082425*10^(-2) (`T__2`(t)+`T__2s`(t))-1.77436275*10^(-3) (`T__2`(t)+`T__2s`(t))^(2)+0.438696375*10^(-5) (`T__2`(t)+`T__2s`(t))^(3)  -0.6189861563*10^(-8) (`T__2`(t)+`T__2s`(t))^(4))) (999.9399+2.1082425*10^(-2) (`T__2`(t)+`T__2s`(t))-1.77436275*10^(-3) (`T__2`(t)+`T__2s`(t))^(2)+0.438696375*10^(-5) (`T__2`(t)+`T__2s`(t))^(3)  -0.6189861563*10^(-8) (`T__2`(t)+`T__2s`(t))^(4))^(2) (`T__2s`(t)-`T__2`(t)))/((-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949) 2.414*10^((247.8)/(0.5 (`T__2`(t)+`T__2s`(t))+133)-5)))^((1)/(6)))/((1+((0.492 (-9.481411*10^(-6) (`T__2`(t)+`T__2s`(t))^(2)+2.1356735*10^(-3) (`T__2`(t)+`T__2s`(t))+0.5599920949))/(`c__p` 2.414*10^((247.8)/(0.5 (`T__2`(t)+`T__2s`(t))+133)-5)))^((9)/(16)))^((8)/(27))))^(2)"

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d, diff(Q(t), t) = A*(T__1(t)-T__1s(t))*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)*(.825+.387*(((-g*h^3*c__p*(4.216485*10^(-2)-7.097451*10^(-3)*(T__1(t)+T__1s(t))+2.63217825*10^(-5)*(T__1(t)+T__1s(t))^2-4.9518879*10^(-8)*(T__1(t)+T__1s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__1(t)+T__1s(t))-1.77436275*10^(-3)*(T__1(t)+T__1s(t))^2+.438696375*10^(-5)*(T__1(t)+T__1s(t))^3-.6189861563*10^(-8)*(T__1(t)+T__1s(t))^4)^2))*(T__1(t)-T__1s(t))/(2.414*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__1(t)+T__1s(t))^2+2.1356735*10^(-3)*(T__1(t)+T__1s(t))+.5599920949))/(2.414*c__p*10^(247.8/(.5*(T__1(t)+T__1s(t))+133)-5)))^(9/16))^(8/27))^2/h, diff(Q(t), t) = A*(T__2s(t)-T__2(t))*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)*(.825+.387*(((-g*h^3*c__p*(4.216485*10^(-2)-7.097451*10^(-3)*(T__2(t)+T__2s(t))+2.63217825*10^(-5)*(T__2(t)+T__2s(t))^2-4.9518879*10^(-8)*(T__2(t)+T__2s(t))^3)/(999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4))*((999.9399+2.1082425*10^(-2)*(T__2(t)+T__2s(t))-1.77436275*10^(-3)*(T__2(t)+T__2s(t))^2+.438696375*10^(-5)*(T__2(t)+T__2s(t))^3-.6189861563*10^(-8)*(T__2(t)+T__2s(t))^4)^2))*(T__2s(t)-T__2(t))/(2.414*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949)))^(1/6)/(1+((.492*(-9.481411*10^(-6)*(T__2(t)+T__2s(t))^2+2.1356735*10^(-3)*(T__2(t)+T__2s(t))+.5599920949))/(2.414*c__p*10^(247.8/(.5*(T__2(t)+T__2s(t))+133)-5)))^(9/16))^(8/27))^2/h, Q(t) = m__1*c__p*(T__1i-T__1(t)), Q(t) = m__2*c__p*(T__2(t)-T__2i)

diff(Q(t), t) = k*A*(T__1s(t)-T__2s(t))/d, diff(Q(t), t) = A*(T__1(t)-T__1s(t))*(-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)*(.825+.387*(-.4142502071*g*h^3*c__p*(0.4216485000e-1-0.7097451000e-2*T__1(t)-0.7097451000e-2*T__1s(t)+0.2632178250e-4*(T__1(t)+T__1s(t))^2-0.4951887900e-7*(T__1(t)+T__1s(t))^3)*(999.9399+0.2108242500e-1*T__1(t)+0.2108242500e-1*T__1s(t)-0.1774362750e-2*(T__1(t)+T__1s(t))^2+0.4386963750e-5*(T__1(t)+T__1s(t))^3-0.6189861563e-8*(T__1(t)+T__1s(t))^4)*(T__1(t)-T__1s(t))/(10^(247.8/(.5*T__1(t)+.5*T__1s(t)+133)-5)*(-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)))^(1/6)/(1+.4087338992*((-0.9481411000e-5*(T__1(t)+T__1s(t))^2+0.2135673500e-2*T__1(t)+0.2135673500e-2*T__1s(t)+.5599920949)/(c__p*10^(247.8/(.5*T__1(t)+.5*T__1s(t)+133)-5)))^(9/16))^(8/27))^2/h, diff(Q(t), t) = A*(T__2s(t)-T__2(t))*(-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)*(.825+.387*(-.4142502071*g*h^3*c__p*(0.4216485000e-1-0.7097451000e-2*T__2(t)-0.7097451000e-2*T__2s(t)+0.2632178250e-4*(T__2(t)+T__2s(t))^2-0.4951887900e-7*(T__2(t)+T__2s(t))^3)*(999.9399+0.2108242500e-1*T__2(t)+0.2108242500e-1*T__2s(t)-0.1774362750e-2*(T__2(t)+T__2s(t))^2+0.4386963750e-5*(T__2(t)+T__2s(t))^3-0.6189861563e-8*(T__2(t)+T__2s(t))^4)*(T__2s(t)-T__2(t))/(10^(247.8/(.5*T__2(t)+.5*T__2s(t)+133)-5)*(-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)))^(1/6)/(1+.4087338992*((-0.9481411000e-5*(T__2(t)+T__2s(t))^2+0.2135673500e-2*T__2(t)+0.2135673500e-2*T__2s(t)+.5599920949)/(c__p*10^(247.8/(.5*T__2(t)+.5*T__2s(t)+133)-5)))^(9/16))^(8/27))^2/h, Q(t) = m__1*c__p*(T__1i-T__1(t)), Q(t) = m__2*c__p*(T__2(t)-T__2i)

(1)

"(->)"

``

``

``

i have a system with 5 dif equations and five unknows. i have told to maple to solve it numerically with interactively solve comand (right cilck button). the window open like it normally does and i put values to my parameters, with an initial condition for the system (Q(0)=0). then i press numerically solve and that's all, the program just keep evaluating with no answer. i wait for 15 min, which i think is too much time, and got any answer yet.

hope you can help with this

thanks.. 
 

Download propuesta_transfer.mw

I assigned

before an algebraic calculation so I would like to get  or have the program print the 70 digits of the answer and not just 10 digits. Because when I press ENTER, I get only 10 digits.

 

First 177 178 179 180 181 182 183 Last Page 179 of 365