Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

                                                                                                                                         

I want to build a custom component by the material’s stress-strain curve ,for the component signal input is the x(t)(displacement-time curve), then I can simulate the material’s acceleration-time curve,the stress-strain equation , parameter and the custom component I built has been given in the picture,but the x(t) is same as the s[rel](t),so how to solve this problem? Thanks first.

 

 

 

 

 

we have positive number from 1 to 1000. how many time we write number 3?

How to increase the size of toolbar icons in Maple 2015 32-bit Classic on Windows?

How do you put labels on individual columns in ColumnGraph?

a1:= f(x) :
> T1 :=simplify((taylor(a1,x=alpha,N+3))):
> E1:=subs([seq(((D@@i)(f))(alpha) = 0,i=1..m-1),f(alpha)=0,x=e[n]+alpha],T1):
> g1 :=(convert(simplify(series((E1,e[n]=0,N))),polynom));

 

 



thanks. I played around, and had problems implementing your ideas for one of the systems I'm interested in.I don't see a difference between this and what you had advised me on, but it gets an error.

any idea why?
or how to fix it?

thing1 := diff(B[1](t), t) = piecewise(t <= 500, 0.3e-2-(63/10000)*B[1](t)-(3/500)*B[2](t), -(3/10000)*B[1](t)):
thing2 := diff(B[1](t), t) = piecewise(t <= 500, 0.1e-1-(1/50)*B[1](t)-(13/625)*B[2](t), -(1/1250)*B[2](t)):
sol := dsolve({thing1, thing2, B[1](0) = 0, B[2](0) = 0}, {B[1](t), B[2](t)}, numeric, output = listprocedure); plots:-odeplot(sol, [B[1](t), B[2](t)], t = 450 .. 550);

Error, (in dsolve/numeric/DAE/explicit) unable to obtain the standard form of the DAE system due to the presence of leading dependent variables/derivatives in the piecewise: piecewise(t <= 500, 1/100-(1/50)*B[1](t)-(13/625)*B[2](t), -(1/1250)*B[2](t))-piecewise(t <= 500, 3/1000-(63/10000)*B[1](t)-(3/500)*B[2](t), -(3/10000)*B[1](t))
Error, (in plots/odeplot) curve is not fully specified in terms of the ODE solution, found additional unknowns {B[1](t), B[2](t)}


how to do differentiation of an ideal in maple?

availables variables : a,b,c

case 1 : all are independent variebles, a,b,c

case 2 : only one independent variable, a

case 3: only one dependent variable a

 

i find this, but i do not know respect to which variable when differentiate an ideal which has 3 variables and 3 equations

http://www.maplesoft.com/support/help/maple/view.aspx?path=DifferentialAlgebra%2fTools%2fDifferentiate

I try to repeat lines (25)-(28) at

 

http://www.maplesoft.com/support/help/maple/view.aspx?path=Physics%2fTrace#commentform

 

I use Maple 14. However, instead of (28) I get the following result:

 

It means that Maple 14 does not perceive p_\mu, k_\nu and m as scalar quantities. I would like to ask how to define these variables correctly.

 

Thank you in advance!

hi.please help me for solve this equations

thanks...

Tur.mw

Non dimensionalisation is a vary common task, and I was suprised that I couldn't find a maple tool to automate it . Has anyone developed their own package for it?

I want to automatically do it to the system equations for some Dynamical systems to make some of the other processing I do with them easier.

I was hoping to start with somehting in the form of 

Diff(x[1],t)=f[1](p[1]....p[n],x[1]...x[m])

...

Diff(x[m],t)=f[m](p[1]....p[n],x[1]...x[m])

where each f[i] is some kind of quotient of multivariate polynomials in the variables and parameters:
and end up with something like

Diff(y[1],s)=f[1](q[1]....q[p],y[1]...y[m])

...

Diff(y[m],s)=f[m](q[1]....q[p],y[1]...y[m])

where p<n

Hi everyone...!

Can somebody tell me how to express this equation in Maple? 

xij <= zkl ; ∀ i ∈ I: S(i)=k, ∀ j ∈ B: R(j)=l; 

Currently I'm dealing with containerization problem and have 4 indexes in the constraints (namely: i for item, j for container, k for shipment, l for route, S for Set of Shipment, and R for Set of Route) while x and z are binary variables. What I want to express is: (for example), item 1,2,3 are in shipment 1, item 4,5 are in shipment 2, etc etc. SO, if i = 1,2,3 then the value of k will be 1. If i = 4,5 then the value of k will be 2, etc. Same thing goes to j and l, (for example) if j = 1,2 then the value of l will be 1, etc etc. Further depcition is more or less like this:

S(i) = k

S(1) = 1

S(2) = 1

S(3) = 1

S(4) = 2

S(5) = 2

 

Thank you very much for the help.

I faced a very large eigenproblem during my research. The square matrix under consideration is of size more than 2^30 times 2^30. I have tried to deal with this problem by the QR algorithm with double implicit shift (more precisely, the Francis double step QR algorithm). I'm a very beginner of programming, but I tried as follows:

--------------------------------------------------------------------------------------------------

A := Matrix([[7, 3, 4, -11, -9, -2], [-6, 4, -5, 7, 1, 12], [-1, -9, 2, 2, 9, 1], [-8, 0, -1, 5, 0, 8], [-4, 3, -5, 7, 2, 10], [6, 1, 4, -11, -7, -1]]):
H := HessenbergForm(A):
p:=6:  
for p while p>2 do: 
q:=p-1: 
s:=H(q,q)+H(p,p):  
t:=H(q,q)*H(p,p)-H(q,p)*H(p,q): 
x:=(H(1,1))^(2)+H(1,2)*H(2,1)-s*H(1,1)+t: 
y:=H(2,1)*(H(1,1)+H(2,2)-s): 
z:=H(2,1)*H(3,2): 
for k from 0 to p-3 do:  
V:=Vector([x,y,z]):   
P:=Transpose(HouseholderMatrix(1/(Norm(V+exp(argument(V(1))*I)*Norm(V,2)*Vector(3,shape=unit[1]),2))*(V+exp(argument(V(1))*I)*Norm(V,2)*Vector(3,shape=unit[1])))):   
r:=max(1,k):
H[k+1..k+3,r..6]:=MatrixMatrixMultiply(Transpose(P),SubMatrix(H,[k+1..k+3],[r..6])):  
r:=min(k+4,6):
H[1..r,k+1..k+3]:=MatrixMatrixMultiply(SubMatrix(H,[1..r],[k+1..k+3]),P):   
x:=H(k+2,k+1):
y:=H(k+3,k+1):   
if k<3 then z:=H(k+4,k+1):   
end if: 
od: 
P:=GivensRotationMatrix(Vector([x,y]),1,2): 
H[q..p,p-2..6]:=MatrixMatrixMultiply(Transpose(P),SubMatrix(H,[q..p],[p-2..6])): 
H[1..p,p-1,p]:=MatrixMatrixMultiply(SubMatrix(H,[1..p],[p-1,p]),P): 
if abs(H(p,q))<10^(-20)*(abs(H(q,q))+abs(H(p,p))) then    H(p,q):=0: p:=p-1:q=p-1:  
elif abs(H(p-1,q-1))<10^(-20)*(abs(H(q-1,q-1))+abs(H(q,q))) then    H(p-1,q-1):=0: p:=p-2:q:=p-1:  
end if:  od:
--------------------------------------------------------------------------------------------------

It seemed that replacing 0 in a Hessenberg matrix by a non-zero element is not allowed. How can I remedy this?

Plus, can anyone tell me the problem of the above thing(it's not really a programming...;( ), please?

I would also appreciate it if someone let me know a better idea for a huge eigenproblem.

Thanks in advance.

es posible obtener la función del contorno de un dominio convexhull ?

 

 

 

Sorry for the uninformative title. I've never used Maple, but I'm willing to buy a student license and learn it. But before spending too much effort and money I need to know if it suits my needs.

Basically what I need to do is:

1) I have a positive definite symmetric matrix of size nxn, where n can range from 2 to inf. I don't know the elements, except the fact that the diagonal has ones everywhere. All I know is that the elements out of the diagonal are in the range [0,1)

2) I have to compute the lower triangular cholesky decomposition of this matrix, lets call it L.

3) I need to subtract from each element of L the mean of the elements in the respective column. Lets call this matrix L*

4) Then I need to evaluate another nxn matrix computed from the elements of L* following a simple pattern.

5) Finally I need to find the eigenvalues of this last matrix.

What I would ideally want is to get a symbolic representation of the n eigenvalues as symbolic functions of the (unknown) elements of the matrix at point 1.

I can drop the assumption of n being unknown, i.e. fix n=3 and get the 3 functions that, after replacing the right values, give me the eigenvalues, then fix n=4 and get 4 functions, etc.

Is this possible to do in maple?

Thank you

First 201 202 203 204 205 206 207 Last Page 203 of 361