Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

In the Grading Quiz, it is possible for students to indicate whether the answer is correct or incorrect. In the context menu, it is also possible to add an icon instead of the text.

For some reason, I can't get this to work! If I assign an icon to the correct answer, the same icon is transferred to the incorrect answer.

Is there a way that I'm missing that can show two different icons rather than the same one?

 

GraphTheory:-GraphEqual says that G1 and G2 are equal, but GraphTheory:-AllPairsDistance gives different results instead: 

restart;

with(GraphTheory)

M := `<|>`(`<,>`(0, 0, 0), `<,>`(1, 0, 0), `<,>`(1, 1, 0))

G__1 := Graph(convert(-M, Matrix, datatype = integer[8]))

G__2 := Graph(convert(-M, Matrix, datatype = integer))

GraphEqual(G__1, G__2)

true

(1)

AllPairsDistance(G__1)

AllPairsDistance(G__2)

Matrix(%id = 36893491227039185244)

 

Error, (in GraphTheory:-AllPairsDistanceExt) negative cycle detected

 

 

Download allpairs.mw

So, which one is incorrect? Any reasons?

that in Kip Thorne's book Maple is mentioned through out ?

Kip Thorne and Roger Blandford : "Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics"

also, courtesy of Caltech in Chapter 24

restart;
alias(u = u(x, z, t), f = f(x, z, t));
                              u, f
u := (f+sqrt(R))*exp(I*R*x);
                    /     (1/2)\           
                    \f + R     / exp(I R x)
pde1 := I*(diff(u, z))+diff(u, x, x)+diff(u, t, t)+u*abs(u)*abs(u)-(u*abs(u)*abs(u))*abs(u)*abs(u);
    / d   \              / d  / d   \\           
  I |--- f| exp(I R x) + |--- |--- f|| exp(I R x)
    \ dz  /              \ dx \ dx  //           

           / d   \                /     (1/2)\  2           
     + 2 I |--- f| R exp(I R x) - \f + R     / R  exp(I R x)
           \ dx  /                                          

       / d  / d   \\           
     + |--- |--- f|| exp(I R x)
       \ dt \ dt  //           

                                                            2
       /     (1/2)\                           2 |     (1/2)| 
     + \f + R     / exp(I R x) (exp(-Im(R x)))  |f + R     | 

                                                            4
       /     (1/2)\                           4 |     (1/2)| 
     - \f + R     / exp(I R x) (exp(-Im(R x)))  |f + R     | 

simplify(%);
         / d   \              / d  / d   \\           
       I |--- f| exp(I R x) + |--- |--- f|| exp(I R x)
         \ dz  /              \ dx \ dx  //           

                / d   \                 2             
          + 2 I |--- f| R exp(I R x) - R  exp(I R x) f
                \ dx  /                               

             (5/2)              / d  / d   \\           
          - R      exp(I R x) + |--- |--- f|| exp(I R x)
                                \ dt \ dt  //           

                                               2  
                                   |     (1/2)|   
          + exp(I R x - 2 Im(R x)) |f + R     |  f

                                               2       
                                   |     (1/2)|   (1/2)
          + exp(I R x - 2 Im(R x)) |f + R     |  R     

                                               4  
                                   |     (1/2)|   
          - exp(I R x - 4 Im(R x)) |f + R     |  f

                                               4       
                                   |     (1/2)|   (1/2)
          - exp(I R x - 4 Im(R x)) |f + R     |  R     
collect(%, exp(I*R*x));
  /  (5/2)       / d   \      2       / d   \   / d  / d   \\
  |-R      + 2 I |--- f| R - R  f + I |--- f| + |--- |--- f||
  \              \ dx  /              \ dz  /   \ dx \ dx  //

       / d  / d   \\\           
     + |--- |--- f||| exp(I R x)
       \ dt \ dt  ///           

                                          2  
                              |     (1/2)|   
     + exp(I R x - 2 Im(R x)) |f + R     |  f

                                          2       
                              |     (1/2)|   (1/2)
     + exp(I R x - 2 Im(R x)) |f + R     |  R     

                                          4  
                              |     (1/2)|   
     - exp(I R x - 4 Im(R x)) |f + R     |  f

                                          4       
                              |     (1/2)|   (1/2)
     - exp(I R x - 4 Im(R x)) |f + R     |  R     
 

Hi Dears

I need some random zero-dimensional binomial ideals (20 ideals or more) with two, three, or four ... generators with 4 variables atmost. Then I want to regenerate each of them such that some of their generators are not binomial and the obtained ideals are equal to the first corresponding original binomial ideals. How can do I this automatically?

As a simple example let I be an ideal generated by {x-1, y-1, z-1} which is zero-dim. We can obtain J=<x-z, x+z-2, y+z-2> that is equal to I.

Thank you in advance.

When I try to enter units using the units palette Maple Flow 2023.1 will erase the numerical value entered. That never happened before in previous releases of Maple Flow. No problem if you enter the units yourself, the problem is when you use the units palette. What is going on? A couple of weeks ago I also posted a question about not beeing able to enter an equal sign when entering a math expression in a text region. Agai, this never happened before in previous releases of Maple Flow. What is happening? Am I doing something wrong?

Since I began to use Maple for teaching back in 2014 (now on 2023 version), the following happens to some students. 

While they are in math mode, the Maple engine suddenly stops being unable to do anything (even 2+2). Only way to solve this is to start a new document or restart Maple. I have seen this issue on both Mac and PC version. 

So my question is what causes this? 

I installed Maple 2023.1 update and immediately noticed a problem with the worksheet editor.

Specifically, the editor seems to be replacing "<" with "!" in the maple code. I first noticed the problem with code copied from the maple code editor into a worksheet, but then noticed the same problem with code on another worksheet which was loaded from file. Thus, it seems the problem is actually in the worksheet editor and not the copy paste function.  Note that the problem occurred immediately on reloading files after I restarted maple from the update. Normally, when this occurs, it starts after Maple has been loaded for an hour or more. Fortunately, when I restarted Maple and reloaded files, the problem seems to have cleared itself.

I have attached images showing the maple screen with the error, and also the specific code copied from the code editor to a worksheet for comparison.  I have also attached the worksheets in which I saw the problem. For now my goto workaround is to save and restart because the problem does not seem to corrupt the actual files even when I save them.

 

Attachments: chain.mw  chain2.mw

Mathematica has a benchmarking package that allows you to evaluate your computer's performance with respect to other computers with different specs.
I was wondering if there was a similar script/package for maple?

How do I add the solve command to the end?

Download Zakobi.mw

I'd like to reproduce Initial Value DDE of Neutral Type in Maple.
The differential equation is: 

deq := D(y)(t) = 2*cos(2*t)*y(t/2)^(2*cos(t)) + ln(D(y)(t/2)) - ln(2*cos(t)) - sin(t): # with y(0) = 1 and known D(y)(0)

Unfortunately, if I type valid initial values, Maple will simply generate , and yet if I just give a partial initial condition, Maple will display and only return incorrect results. 
 

restart;

interface(version)

`Standard Worksheet Interface, Maple 2023.1, Windows 10, July 7 2023 Build ID 1723669`

(1)

deq := (D(y))(t) = 2*cos(2*t)*y((1/2)*t)^(2*cos(t))+ln((D(y))((1/2)*t))-ln(2*cos(t))-sin(t)

RealDomain:-solve(subs(t = 0, y(0) = 1, deq), (D(y))(0))

2, -LambertW(-2*exp(-2))

(2)

dsolve({deq, y(0) = 1, (D(y))(0) = (2, -LambertW(-2*exp(-2)))[1]}, 'numeric', 'delaymax' = Pi, 'range' = 0 .. 2*Pi)

Error, (in dsolve/numeric/DAE/initial) too many initial conditions, the following are not needed: {D(y)(0) = 2}

 

dsolve({deq, y(0) = 1, (D(y))(0) = (2, -LambertW(-2*exp(-2)))[2]}, 'numeric', 'delaymax' = Pi, 'range' = 0 .. 2*Pi)

Error, (in dsolve/numeric/DAE/initial) too many initial conditions, the following are not needed: {D(y)(0) = -LambertW(-2*exp(-2))}

 

dsn := dsolve({deq, y(0) = 1}, 'type' = 'numeric', 'delaymax' = Pi, 'range' = 0 .. 2*Pi)

plots['odeplot'](dsn, 0 .. 2*Pi)NULL

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

`[Length of output exceeds limit of 1000000]`

 

Warning, cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up

 

 


 

Download ndelay.mw

The output is wrong. Note that "y(0) = 1" is insufficient to uniquely specify a solution, as "D(y)(0)" can be either -LambertW(-2/exp(2)) or 2. But Maple does not allow sufficient constraints here. How do I avoid such an unexpected behavior?

Here is a test: 

For small matrices, apart from the first call, the performance is almost perfect (🎉!). 
As a comparison, an equivalent test may be performed in modern Python:

As you can see, for 1024×1024, 2048×2048, 4096×4096, 8192×8192, and 16384×16384 matrices, Maple's performance gets pretty poor. Is the FFT procedure not well optimized for larger matrices? I do have read the Fourier Transforms in Maple, yet I cannot find any information on this subject. 
In accordance with the following output 

showstat(DiscreteTransforms::FFT_complex8, 3):

FFT_complex8 := proc()
       ...
   3   :-DiscreteTransforms:-FFT_complex8 := LinkExternal('hw_FFT',2003);
       ...
end proc

it appears that the code hasn't been developed for 20 years. Is it possible to improve the performance of the FFT built into Maple in order that the computation on such a 2¹⁴×2¹⁴ matrix can be achieved in about twenty seconds (rather than in two minutes)?

Note. For these matrices, exact transform results (see below) can be obtained symbolically.

for n from 0 to 12 do
    m := LinearAlgebra:-HankelMatrix(<$ (1 + 1 .. 2**n + 2**n)>, datatype = complex[8], shape = []): gc();
    print(n, andseq(abs(_) < HFloat(1, -10, 2), _ in SignalProcessing:-FFT(m, normalization = none, inplace = true) - Matrix(2^n, <2^(2*n)*(2^n + 1), <'2^(2*n - 1)*(:-cot((k - 1)/2^n*Pi)*I - 1)' $ 'k' = 1 + 1 .. 2^n>>, shape = symmetric, storage = sparse, datatype = complex[8])) (* faster than `rtable_scanblock` and `ArrayTools:-IsZero` and much faster (🎊!) than `comparray` and `verify/Matrix` with testfloat *) )
od:
 = 
                            0, true

                            1, true

                            2, true

                            3, true

                            4, true

                            5, true

                            6, true

                            7, true

                            8, true

                            9, true

                            10, true

                            11, true

                            12, true

However, the main goal is to test the numerical efficiency of Maple's fast Fourier transform algorithm.

Q1: Why does Maple use the bar as a delimiter for certain elliptic expressions and the comma for others?

Is that in line with: Gradshteyn and Ryzhik (G&R) and in the popular "Handbook of Mathematical Functions" edited by Abramowitz and Stegun (A&S), as stated in help(JacobiAM)?      

Q2: Can I have the comma instead of the vertical bar for the Jacobian functions?

Q3: If not, how to get a bit more space between the symbols and the bar for better readability?

 

interface(version)

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

(1)

FunctionAdvisor(relate, EllipticF, InverseJacobiSN)

EllipticF(z, k) = InverseJacobiSN(z, k)

(2)

Typesetting:-EnableTypesetRule(Typesetting:-SpecialFunctionRules)

{}

(3)

EllipticF(z, k) = InverseJacobiSN(z, k)

EllipticF(z, k) = InverseJacobiSN(z, k)

(4)

NULL


 

Download Argument_delimiter.mw

How to get same graph from maple with finite difference method for differential equations 

I m new here how to plot this i have seen related posts no where given clear idea for FDM method

plase help me to get the results Thank you

 

 

Suppose that a procedure is declared with option threadsafe and it has a local child procedure PC (possibly anonymous). Is their any benefit, or perhaps any detriment, to also declaring PC with option threadsafe? For example, is there any benefit or detriment to the yellow option threadsafe in this code below?:

P:= proc()
option threadsafe;
local PC:= proc()
option threadsafe; (* some code *) end proc;
    (* some code *)
    PC();
    (* some code *)

end proc;

First 41 42 43 44 45 46 47 Last Page 43 of 361